京东小程序是一个开放技术平台,正在被越来越多的头部品牌选择,用于站内私域流量的营销和运营。诸如各种日化、奢侈品等品牌对ARVR有较多的诉求,希望京东小程序引擎提供一些底层能力,叠加品牌自主的个性化开发和定制,以支持更加丰富的场景和玩法,比如AR试妆、试戴等。
## 前言 我的服务器带宽比较高,博客部署在上面访问的时候几乎没感觉有加载延迟,就没做图片这块的优化,不过最近有小伙伴说博客的图片加载比较慢,那就来把图片优化完善一下吧~ 目前有两个地方需要完善 - 图片瀑布流 - 图片缩略图 ## 图片瀑布流 关于瀑布流之前的文章有介绍: [基于.NetCore开
对于有科班背景的读者,可以跳过本系列文章。这些文章的主要目的是通过简单易懂的汇总,帮助非科班出身的读者理解底层知识,进一步了解为什么在面试中会涉及这些底层问题。否则,某些概念将始终无法理解。这些计算机基础文章将为你打通知识的任督二脉,祝你在编程领域中取得成功!
本章节主要讨论了如何通过零拷贝技术来优化文件传输的性能。零拷贝技术主要通过减少用户态和内核态之间的上下文切换次数和数据拷贝次数来提高性能。具体来说,介绍了两种实现零拷贝的方式:mmap + write和sendfile。使用mmap + write可以减少一次数据拷贝过程,而使用sendfile系统调用可以进一步减少系统调用和数据拷贝次数。此外,还介绍了如果网卡支持SG-DMA技术,可以通过DMA将数据直接拷贝到网卡缓冲区,实现真正的零拷贝。通过这些优化方法,可以显著提高文件传输的性能。
本文主要围绕应用部署引起上游服务抖动问题展开,结合百川分流系统实例,提供分析、解决思路,并提供一套切实可行的实践方案。
最近在对稳健理财BFF层聚合查询服务优化治理,针对文章内的串行改并行章节进行展开,分享下实践经验,主要涉及原同步改异步的过程、全异步化后衍生的问题以及治理方面的思考与改进。
前几天笔者提交了关于FasterKvCache的性能优化代码,其中有一个点就是我把一些后续不需要继承的类设置为了sealed密封类,然后就有小伙伴在问,为啥这个地方需要设置成sealed? 提交的代码如下所示: 一般业务开发的同学可能接触密封类比较少,密封类除了框架设计约束(不能被继承)以外,还有一
通过本文的介绍,我们深入了解了Spring AI项目的优势和特性,以及在实际应用中的快速实战示例。Spring AI作为一个高度抽象化的人工智能应用程序开发框架,为开发者提供了便捷的模型支持、灵活的功能模块交换和优化能力。它不仅能将AI模型输出映射为POJO,还能与主流矢量数据库提供商无缝集成,从而...
在当今日益发展的电力系统中,光伏储能技术以其独特的优势逐渐崭露头角,成为可再生能源领域的重要组成部分。而在光伏储能系统的运行与监控中,通信协议的选择与实现则显得至关重要。本文将重点介绍光伏储能系统中的Modbus协议、电力IEC 61850平台,以及如何通过协议转换网关实现Modbus转IEC 61
主要内容 程序完全复现文献模型《基于改进粒子群算法的微电网多目标优化调度》,以微电网系统运行成本和环境保护成本为目标函数,建立了并网方式下的微网多目标优化调度模型,通过改进粒子群算法和原始粒子群算法进行对比,验证改进方法的优越性。虽然标题是多目标优化算法,实质指的是权值多目标,即通过不同目标权值相加
liwen01 2024.06.23 前言 在嵌入式Linux设备中,经常使用jffs2文件系统来作为参数区的文件系统格式。至于为什么要使用jffs2来作为参数区的文件系统,我猜大部分人都没有做过多的思考。 jffs2在2021年被设计出来,距今已过二十多年,现在在嵌入式设备中它还在被大量使用、说明
好的测试用例及性能测试是对一个库的稳定及优秀的重要标准,尽量的覆盖全的单元测试,能及早的发现bug,使程序更稳定。
一、写在开头 在我们一开始讲多线程的时候,提到过异步与同步的概念,这里面我们再回顾一下: 同步:调用方在调用某个方法后,等待被调用方返回结果;调用方在取得被调用方的返回值后,再继续运行。调用方顺序执行,同步等待被调用方的返回值,这就是阻塞式调用; 异步:调用方在调用某个方法后,直接返回,不需要等待被
本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。
引言 传统的并发控制手段,如使用synchronized关键字或者ReentrantLock等互斥锁机制,虽然能够有效防止资源的竞争冲突,但也可能带来额外的性能开销,如上下文切换、锁竞争导致的线程阻塞等。而此时就出现了一种乐观锁的策略,以其非阻塞、轻量级的特点,在某些场合下能更好地提升并发性能,其中
介绍了在不同指令集环境下(SSE4\SSE3\SSE2)统计二进制中1的个数的优化,其优化速度较最原始版本的有近80倍提高。
前置知识 \(\sum\) 为累加符号,\(\prod\) 为累乘符号。 上三角矩阵指只有对角线及其右上方有数值其余都是 \(0\) 的矩阵。 如果一个矩阵的对角线全部为 \(1\) 那么这个矩阵为单位矩阵记作 \(I\)。 对于矩阵 \(A_{n,m}\) 和矩阵 \(B_{m,n}\) 满足 \
RunnerGo 最新V4.6.0版本不仅对原有功能进行了深度优化和改进,还新增了一些新功能。 UI 插件:浮窗升级,优化浏览体验 此次更新UI插件全新升级至V2.1版本。新版取消了页面内右下角按钮的设计,在浏览器右侧开启了浮窗,从而更方便客户操作浏览器界面。 RunnerGo UI插件本次升级前&
我们在使用分类算法训练数据后,评价分类模型的优劣时,经常会遇到一个词,“基尼系数”。那么,什么是基尼系数呢? 本文将尝试用最简单的方式介绍什么是“基尼系数”以及它的计算方法和意义。希望能让大家对基尼系数有个直观的印象,而不仅仅是记住它枯燥的计算公式。 1. 从分类模型开始 首先,先假设有一个分类案例
在创建Next.js项目时,根页面会自动生成一个metadata对象,其中包含标题和描述等关键信息。每当页面被访问时,这个metadata对象会被读取并应用到HTML的默认配置中,确保页面的基本信息得以正确展示。在存在单独页面需要采用独特的标题或描述时,这些特定页面的元数据将优先于根元素所设定的全局