算法学习笔记(13): Manacher算法

算法,学习,笔记,manacher · 浏览次数 : 32

小编点评

**Manacher 算法形象的被译为马拉车算法** 马拉车算法是一种用于处理简单的回文字符串的问题算法,其复杂度为 O(n) ,其中 n 是字符串的长度。 **算法步骤:** 1. **预处理**: - 将字符串预处理成一个包含所有字符的字符串。 - 为了避免出现偶数长度的回文串,我们预处理了字符串,并定义了一些辅助概念。 2. **中心扩展法**: - 以某一个点为中心,向两边扩展。 - 对于奇数长度的回文串,只考虑最右边界扩展到的最大长度。 - 对于偶数长度的回文串,考虑所有能够向外扩展的边界,并扩展到能覆盖所有字符的边界。 3. **更新边界**: - 对于每个位置 i ,记录以 i 为中心的回文串的最大长度的半径(包括 i)。 - 更新边界 R ,以表示能向外扩展的最长回文串的边界。 4. **最终结果**: - 返回边界 R 的值。 **时间复杂度:** O(n) ,其中 n 是字符串的长度。 **优点:** - 利用回文串的对称性,可以充分利用其对称区间的信息。 - 避免出现偶数长度的回文串。 **应用:** - 处理简单回文字符串。 - 寻找字符串中所有回文串的最大长度。

正文

Manacher算法

形象的被译为马拉车算法

这个算法用于处理简单的回文字符串的问题。可以在 \(O(n)\) 的复杂度内处理出每一个位置为中心的回文串的最长长度。

为了避免出现偶数长度的回文串,导致过多的分类讨论,我们预处理一下字符串。

例如:jeefy

我们可以预处理成 ^#j#e#e#f#y#$。(开始,间隔和结束符尽量不一样,并且不能出现在原序列中)

那么我们再定义一点点东西:

  • P[i] 指在处理后的字符串中,以 i 为中心的回文串的最大长度的半径(包括了 i)也就是说,处理后的串中,(i-P[i], i+P[i]) 这个开区间是一个回文串。

  • R 指我们已经搜索到的最右边界,M 指最右边界对应的中心

为了方便讲解,我们先考虑更朴素的算法:中心扩展法(名字来源LeetCode)。

其实思路很简单,我们以某一个点为中心向两边扩展,同时需要分类讨论奇数长度和偶数长度。

int expandAt(char * s, int l, int r) {
    int len = strlen(s);
    while (0 <= l && r < len && s[l - 1] == s[r + 1]) ++r, --l;
    return r - l - 1;
}

未验证代码,注意甄别

其时间复杂度为 \(O(n^2)\) ,但是,在随机数据下,其表现接近于线性。毒瘤出题人当然不愿意了

所以,有了 Manacher 算法来优化。

其算法核心思想在于利用回文串的对称性,这样我们可以充分的利用其对称区间的信息。

如图:

若黑色区间是一个回文串,且黑色竖线为其中心已知红色区间是一个能向外扩展的最长回文串,那么很容易得知橙色的区间也是一个回文串,并且这个回文串对于这个中心是最长的

理解回文串的对称性,如果橙色的不是最长的,意味着对称过来红色的也不是最长的,与已知冲突。

那么我们考虑什么时候可以扩展出去?

如图,如果左侧对应的回文串左边界超过或者等于黑色部分的边界,那么,实际上,右侧只有橙色部分(黑色边界内)的信息是可以用的。

因为回文串的对称性并没有包括了黑色部分以外的信息,所以……

同理,如果右侧的中心已经在黑色部分以外了……那么也没有可用的信息,暴力扩展即可。

参考代码:

for (int i(1); i < n; ++i) {
    p = R > i ? min(R - i + 1, P[(M<<1) - i]) : 1; // 可用信息
    while (s[i + p] == s[i - p]) ++p; // 向两边扩展 
    if (i + p - 1 > R) M = i, R = i + p - 1; // 更新边界
    P[i] = p;
}

复杂度证明:

我们考虑边界 R,从 0 更新到 n,总共变化了 n 次。

那么 R 什么时候被更新?

也就是第二种情况,可以向外扩展才可以更新 R,且每一次成功的扩展会使 R 变大一位。

如果是第一种情况,那么是无法向外扩展的,且 R 也不会改变。

也就是说,最多只会扩展 \(O(n)\) 次,所以,整个算法的复杂度为 \(O(n)\),常数非常小。


对于模板题:【模板】manacher 算法 - 洛谷

参考代码如下:


例题:SHOI2011 双倍回文

可以参考我的题解:[SHOI2011]双倍回文 题解 - jeefy - 博客园


那么 Mancher 是否只能用在字符串上?

可以发现的是 Manacher 算法其实和字符集的大小没有关系,并且只用到了相等与不等的关系。

这启发我们其实完全可以扩展 Manacher 的,处理更多的信息。

经典的一道题是:CF1080E,其中定义的是字符的集合的相等和不等关系,也就是从字符扩展到了字符的集合。这也可以通过哈希来判断,也就是扩展到整数上。

与算法学习笔记(13): Manacher算法相似的内容:

算法学习笔记(13): Manacher算法

# Manacher算法 > 形象的被译为**马拉车算法** 这个算法用于处理简单的回文字符串的问题。可以在 $O(n)$ 的复杂度内处理出每一个位置为中心的回文串的最长长度。 为了避免出现偶数长度的回文串,导致过多的分类讨论,我们预处理一下字符串。 例如:`jeefy` 我们可以预处理成 `^#j

算法学习笔记(6): 树链剖分

树链剖分 树链剖分是一个很神奇,但是在树上可以完成一些区间操作问题 简单来说,就是把一棵树分成一条条的链,通过维护链上的信息来维护整棵树的信息 基础知识可以参考我的另外一篇博客:算法学习笔记(5): 最近公共祖先(LCA) 这里假设你已经掌握了上述博客中的所有相关知识,并清晰了其背后的原理 性质?发

算法学习笔记(11): 原根

原根 此文相对困难,请读者酌情食用 在定义原根之前,我们先定义其他的一点东西 阶 通俗一点来说,对于 $a$ 在模 $p$ 意义下的阶就是 $a^x \equiv 1 \pmod p$ 的最小正整数解 $x$ 或者说,$a$ 在模 $p$ 意义下生成子群的阶(群的大小) 再或者说,是 $a$ 在模

算法学习笔记(30):Kruskal 重构树

Kruskal 重构树 这是一种用于处理与最大/最小边权相关的一个数据结构。 其与 kruskal 做最小生成树的过程是类似的,我们考虑其过程: 按边权排序,利用并查集维护连通性,进行合并。 如果我们在合并时,新建一个节点,其权值为当前处理的边的权值,并将合并的两个节点都连向新建的节点,那么就可以得

算法学习笔记(3.1): ST算法

ST表 在RMQ(区间最值)问题中,著名的ST算法就是倍增的产物。ST算法可以在 \(O(n \log n)\) 的时间复杂度能预处理后,以 \(O(1)\) 的复杂度在线回答区间 [l, r] 内的最值。 当然,ST表不支持动态修改,如果需要动态修改,线段树是一种良好的解决方案,是 \(O(n)\

C++算法之旅、09 力扣篇 | 常见面试笔试题(上)算法小白专用

算法学习笔记,记录容易忘记的知识点和难题。详解时空复杂度、50道常见面试笔试题,包括数组、单链表、栈、队列、字符串、哈希表、二叉树、递归、迭代、分治类型题目,均带思路与C++题解

C++算法之旅、08 基础篇 | 质数、约数

算法学习笔记,记录容易忘记的知识点和难题。试除法、分解质因数、筛质数、约数个数、约数之和、最大公约数

算法学习笔记(1): 欧几里得算法及其扩展

扩展欧几里得算法详解 在了解扩欧之前我们应该先了解欧几里得算法 欧几里得算法 这是一个递归求最大公约数(greatest common divisor)的方法 $$ gcd(a, b) = gcd(b, a % b) $$ 可以通过一个类似的简单公式推导而来 好像叫做辗转相减法来着? $$ gcd(

算法学习笔记(3): 倍增与ST算法

倍增 目录倍增查找 洛谷P2249重点变式练习快速幂ST表扩展 - 运算扩展 - 区间变式答案倍增更多的用法优化矩形查询优化建图优化 DP作者有话说 倍增,字面意思即”成倍增长“ 他与二分十分类似,都是基于”2“的划分思想 那么具体是怎么样,我们以一个例子来看 查找 洛谷P2249 依据题面,我们知

算法学习笔记(4): 并查集及其优化

# 并查集 并查集,Disjoint-Set,或者通俗一点,叫做MergeFind-Set,是一种可以动态维护若干个不重叠的集合,并支持集合之间的合并与查询的数据结构。 集体来说,并查集支持下列两个操作: - Find,查询元素所属集合 - Merge,将两个元素所属集合合并 一般来说,为了具体实现