算法学习笔记(16): 组合数学基础

算法,学习,笔记,组合,数学,基础 · 浏览次数 : 219

小编点评

当然啦,欢迎你继续分享关于生成内容的知识,我乐意帮你!

正文

组合数学基础

本文部分运用到了生成函数的知识

如果直接食用本文结论,请忽略下列链接。

生成函数参考博客:普通型生成函数 - Ricky2007 - 博客园

我认为讲的不错

组合数学非常有用!我们先从一点点简单的性质开始

简单原理

  • 加法原理

    这非常简单,我们举一个例子即可:考虑我有 \(5\) 个红苹果和 \(3\) 个绿苹果,如果你要选一个苹果去吃,那么你一共有 \(5 + 3 = 8\) 种选择的方法

  • 乘法原理

    同样非常简单:考虑我有 \(5\) 个苹果,涵儿有 \(6\) 个苹果,我们各自拿出一个苹果,那么一共有 \(5 \times 6 = 30\) 种拿出的方案

  • 减法原理和除法原理

    本质与加法原理和乘法原理相似,这里不做展开

  • 抽屉原理

    (广义)如果 \(n\) 个物品一共有 \(k\) 种状态,那么至少有 \(\lceil \frac nk \rceil\) 种物品处于一个状态

    推论:一个从有 \(> k\) 个元素的集合映射到 \(k\) 个元素的集合的函数一定不是一对一函数。

终于正式开始将排列组合了!

排列

定理:具有 \(n\) 个元素的集合,选出 \(r\) 个排列的可能数(顺序相关

\[P(n, r) = n(n - 1)(n - 2)\cdots(n - r + 1) \]

证明:由于顺序相关,不能选择同一个数多次,那么第一个位置有 \(n\) 种选法,第二个位置有 \(n - 1\) 中选法,以此类推,第 \(i\) 个位置有 \(n - i + 1\) 种选法。考虑乘法原理,那么就得出了上述结论。

特殊的:只要 \(n\) 是一个非负整数,那么 \(P(n, 0) = 1\),因为恰好有一种方法来排列 \(0\) 个元素

简写公式:一般来说,我们不会写成上述形式,而是

\[P(n, r) = \frac {n!}{(n - r)!} \]

多重排列

考虑这样一个问题:我有 \(7\) 个盘子,\(2\) 个苹果,\(3\) 个橘子和 \(2\) 个桃子,分别在一个盘子中放一个水果,一共有多少种放法(我们认为同一种水果是相同的)?

经过计算,一共有 \(\frac {7!}{2!3!2!} = 210\) 种放法。

抽象来说,我们将 \(k\) 个元素进行排列,对于第 \(i\) 个元素一共有 \(x_i\) 个。那么总的排列方案数为

\[\frac {(x_1 + x_2 + \cdots + x_k)!}{x_1!x_2!\cdots x_k!} \]

组合

其实就是顺序无关的排列

定理:具有 \(n\) 个元素的集合,选出 \(r\) 个数组成新的集合,本质不同的集合数为

\[C(n,r) = {n \choose r} = \frac {n!}{r!(n-r)!} \]

由于顺序无关,我们考虑通过排列推导。

证明:为了得出所有集合,我们先考虑顺序相关,也就是有 \(P(n, r)\) 个排列,而对于每一个排列,如果不考虑顺序,一共重复计算了 \(P(r, r)\) 次,所以

\[C(n, r) = \frac{P(n, r)}{P(r,r)} = \frac {\frac {n!}{(n-r)!}}{\frac{r!}{(r-r)!}} = \frac {n!}{r!(n-r)!} \]

性质

接下来我们考虑组合的各种性质


\[{n \choose m} = {n \choose n - m} = \frac nm {n - 1 \choose m - 1} = {n-1 \choose m} + {n - 1 \choose m - 1} \]

  • 前两个等式,考虑按照定义展开化简即可

  • 考虑最后一个等式,其实就是杨辉三角的递推,我们钦定 \(n\) 中的一个元素,分情况讨论

    • 如果不选择这个数,也就是在剩下的数中选择 \(m\) 个数,那么一共有 \({n-1 \choose m}\) 种情况

    • 如果选择这个数,那么只需要在剩下的数种选择 \(m - 1\) 个数即可,那么一共有 \(n - 1 \choose m - 1\) 种情况


\[\binom nk \binom km = \binom nm \binom {n-k}{m-k} \]

证明:展开即可


\[\sum_{i=k}^n \binom ik = \binom {n+1}{k+1} \]

证明:还是考虑展开

\[\sum_{i=k}^n \binom ik = \binom k {k+1} + \binom kk + \binom {k+1} k + \cdots + \binom nk \]

\(\binom k {k+1}\) 是不合法的,所以其值为 0,加上去之后不会对结果产生影响

我们通过公式 \(\binom nm = {n-1 \choose m} + {n - 1 \choose m - 1}\) 两两合并即可。

推论:我们将 \(i\) 平移,那么得出

\[\sum_{i=0}^m \binom {k+i}i = {k + m + 1 \choose m + 1} \]


\[\sum_{i=0}^n i \binom ni = n 2^{n-1} \]

证明

考虑代数展开,通过 \({n \choose m} = {n \choose n - m}\) 变化即可。

\[\begin{aligned} \sum_{i=0}^n i \binom ni &= 0 \binom n0 + 1 \binom n1 + \dots + (n-1) \binom n {n-1} + n \binom nn \\ \end{aligned} \]

但是,其实可以通过生成函数推导。推导步骤如下:

我们先展开,得到

\[0 + 1 \binom n1 + 2 \binom n2 + \cdots + n \binom nn \]

我们可以由此联想到生成函数求导的公式

\[<a_1, a_2, a_3, \dots> \to <a_2, 2a_3, 3a_4, \dots> \]

那么我们考虑求导前的生成函数序列:

\[<\binom n0, \binom n1, \binom n2, \dots, \binom nn, 0, \dots> \]

显然,其生成函数展开之前为 \(F(x) = (1+x)^n\)

那么我们对其求导得到 \(F'(x) = n(1+x)^{n-1}\)

展开之后为

\[<1\binom n1, 2\binom n2, 3\binom n3, \dots, n \binom nn, 0, \dots> \]

我们考虑需要把所有的系数加起来,那么我们令 \(x = 1\) 即可

所以,得出

\[\sum_{i=0}^n i \binom ni = F'(1) = n (1+1)^{n-1} = n 2^{n-1} \]


我们考虑扩展一下上述式子

\[\sum_{i=0}^n i^2 \binom ni = n 2^{n-1} + (n-1)n2^{n-2} \]

考虑还是利用生成函数的思路。

将生成函数 \(F'(x) = n(1+x)^{n-1}\) 向右平移一位并再次求导:

\[\begin{aligned} G(x) &= xF'(x) = nx(1+x)^{n-1} \\ G'(x) &= n(1+x)^{n-1} + (n-1)nx(1+x)^{n-2} \\ \end{aligned} \]

那么我们还是借上面的思路,令 \(x = 1\),所以

\[\begin{aligned} \sum_{i=0}^n i^2 \binom ni &= G'(1) \\ &= n2^{n-1} + (n-1)nx(1+x)^{n-2} \\ &= n 2^{n-1} + (n-1)n2^{n-2} \\ \end{aligned} \]

二项式定理

定理:令 \(n\) 是非负整数,那么有

\[\begin{aligned} (x+y)^n & = \sum_{i = 0}^n x^{n - i}y^i \\ & = \binom{n}{0}x^ny^0 + \binom n1 x^{n-1}y^1 + \cdots + \binom n {n-1} x^1y^{n-1} + \binom nn x^0 y^n \end{aligned} \]

考虑展开之后每一项都应该是 \(n\) 次的,所以 \(x\)\(i\) 次一共有 \(\binom ni\) 种情况

我们利用这个找到一些有用的性质:

推论:令 \(n\) 为非负整数,那么

\[\sum_{i=0}^n \binom ni = 2^n \]

证明:用二项式定理,令 \(x = y = 1\),那么

\[2^n = (1 + 1)^n = \sum_{i=0}^n \binom ni 1^i1^{n-i} = \sum_{i=0}^n \binom ni \]

推论:令 \(n\) 为非负整数,那么

\[\sum_{i=0}^n (-1)^i \binom ni = 0 \]

证明:令 \(x = -1, y = 1\) 即可

范德蒙卷积

已知 \(n, m, t\)

\[\sum_{i=0}^t \binom ni \binom m {t-i} = \binom{n + m} t \]

证明:在组合意义上,相当于在 \(n\) 中选 \(i\) 个,在 \(m\) 中选剩下的,也就是在 \(n + m\) 中选择 \(t\) 个。

而二项式证明这里就不展开了。

例题

请证明:

\[\sum_{i=0}^n {\binom ni}^2 = \binom {2n} n \]

Lucas定理

定理:

\[\binom nm \equiv \binom {\lfloor \frac np \rfloor}{\lfloor \frac mp \rfloor} \binom {n \% p}{m \% p} \pmod p \]

这个证明相对复杂,请酌情食用

证明

我们考虑通过带余方程改写上述式子:

\[\binom {sp + t}{kp + r} \equiv \binom sk \binom tr \pmod p \]

我们通过生成函数 \(F(x) = (1+x)^{sp+t}\) 的第 \(kp+r\) 次项的系数求。

我们先求一个推导的时候需要的东西:

\[\begin{aligned} (1+x)^p & \equiv 1 + \binom p1 x + \binom p2 x^2 + \binom p3 x^3 + \cdots + \binom p {p-1} x^{p-1} + x^p \pmod p \\ & \equiv 1 + x^p \pmod p \end{aligned} \]

那么我们正式开始推导:

\[\begin{aligned} (1+x)^{sp+t} & \equiv (1+x)^{sp} \cdot (1+x)^t \pmod p \\ & \equiv ((1+x)^p)^s \cdot (1+x)^t \\ & \equiv (1+x^p)^s \cdot (1+x)^t \\ & \equiv \sum_{i=0}^s \binom si x^{pi} \cdot \sum_{j=0}^t \binom tj x^j \end{aligned} \]

我们取 \(x^{kp+r}\)

那么当且仅当 \(i = k, j = r\) 时,就可以取出 \(x^{kp+r}\) 项的系数。

考虑为什么当且仅当

可知,我们需要 \(ip+j = kp + r\)

\[\begin{aligned} & \because j \in [0, t], t \in [0, p), r \in [0, p) \\ & \therefore j = r, i = k \end{aligned} \]

那么,其系数为

\[\binom sk \binom tr \]

所以,可知

\[\binom sk \binom tr \equiv \binom {sp+t} {kp+r} \pmod p \]

得证:

\[\binom nm \equiv \binom {\lfloor \frac np \rfloor}{\lfloor \frac mp \rfloor} \binom {n \% p}{m \% p} \pmod p \]

程序实现

这里还是稍微讲一下吧

首先,我们需要求出组合数,那么我们先预处理一下模数以内的阶乘和阶乘逆元:

long long fac[N] = {1}, ifac[N];
for (int i = 1; i < MOD; ++i) fac[i] = (i * fac[i - 1]) % MOD;
ifac[MOD - 1] = quickPow(fac[MOD - 1], MOD - 2, MOD);
for (int i = MOD - 1; i; --i) ifac[i - 1] = ifac[i] * i % MOD;

考虑一下组合数的特殊情况,如果 \(n < m\) 那么 \(\binom nm = 0\)

所以我们求模数以内的组合数方法如下:

inline int C(int i, int j) {
    if (i > j) return 0;
    return fac[j] * ifac[i] % MOD * ifac[j - i] % MOD;
}

那么Lucas定理呢?我们处理一下 \(n = 0\) 的特殊情况即可

inline int Lucas(int i, int j) {
    if (i == 0) return 1;
    return Lucas(i / MOD, j / MOD) * C(i % MOD, j % MOD) % MOD;
}

广义容斥与二项式反演

这个部分相对较复杂,我给出反演公式

\(f_n\) 表示之多拥有 \(n\) 个属性的集合个数,\(g_n\) 表示恰好拥有 \(n\) 个属性的集合

那么

\[\begin{aligned} f_n &= \sum_{i=0}^n \binom ni g_i \\ g_n &= \sum_{i=0}^n (-1)^{n-i} \binom ni f_i \end{aligned} \]

反演推导证明

\[\begin{aligned} g_n &= \sum_{i=0}^n (-1)^{n-i} \binom ni \sum_{j=0}^i \binom ij g_j \\ & 求和符号变换: \\ &= \sum_{j=0}^n g_j \sum_{i = j}^n \binom ni \binom ij (-1)^{n - i} \\ &= \sum_{j=0}^n g_j \sum_{i = j}^n \binom nj \binom {n-j}{i-j} (-1)^{n-i} \\ &= \sum_{j=0}^n g_j \binom nj \sum_{i = j}^n \binom {n-j}{i-j} (-1)^{n-i} \\ &= \sum_{j=0}^n g_j \binom nj \sum_{i=0}^{n-j} \binom {n-j}i (-1)^{n-i} \\ &= \sum_{j=0}^n g_j \binom nj (1 + (-1))^{n-j} \\ & [当且仅当 n=j 时有贡献: (1+(-1))^{n-j} \ne 0] \\ &= g_j \binom nj [n=j] \\ &= g_n \end{aligned} \]

与算法学习笔记(16): 组合数学基础相似的内容:

算法学习笔记(16): 组合数学基础

组合数学基础 本文部分运用到了生成函数的知识 如果直接食用本文结论,请忽略下列链接。 生成函数参考博客:普通型生成函数 - Ricky2007 - 博客园 我认为讲的不错 组合数学非常有用!我们先从一点点简单的性质开始 简单原理 加法原理 这非常简单,我们举一个例子即可:考虑我有 $5$ 个红苹果和

算法学习笔记(∞):杂项

杂项 目录杂项代码规范算法优化的本质记忆化搜索基于边的记忆化动态规划树上每一个点求答案计数题关于仙人掌 DAG 的拓扑序计数关于微扰贪心的证明组合数前缀和单位根反演\(O(n^2)\) 状态求和矩形式子求和\(O(n^2)\) 状态 \(O(n)\) 单点问题CDQ 分治FFT 循环卷积根号多项式算

CaiT:Facebook提出高性能深度ViT结构 | ICCV 2021

CaiT通过LayerScale层来保证深度ViT训练的稳定性,加上将特征学习和分类信息提取隔离的class-attention层达到了很不错的性能,值得看看 来源:晓飞的算法工程笔记 公众号 论文: Going deeper with Image Transformers 论文地址:https:/

算法学习笔记(6): 树链剖分

树链剖分 树链剖分是一个很神奇,但是在树上可以完成一些区间操作问题 简单来说,就是把一棵树分成一条条的链,通过维护链上的信息来维护整棵树的信息 基础知识可以参考我的另外一篇博客:算法学习笔记(5): 最近公共祖先(LCA) 这里假设你已经掌握了上述博客中的所有相关知识,并清晰了其背后的原理 性质?发

算法学习笔记(11): 原根

原根 此文相对困难,请读者酌情食用 在定义原根之前,我们先定义其他的一点东西 阶 通俗一点来说,对于 $a$ 在模 $p$ 意义下的阶就是 $a^x \equiv 1 \pmod p$ 的最小正整数解 $x$ 或者说,$a$ 在模 $p$ 意义下生成子群的阶(群的大小) 再或者说,是 $a$ 在模

算法学习笔记(30):Kruskal 重构树

Kruskal 重构树 这是一种用于处理与最大/最小边权相关的一个数据结构。 其与 kruskal 做最小生成树的过程是类似的,我们考虑其过程: 按边权排序,利用并查集维护连通性,进行合并。 如果我们在合并时,新建一个节点,其权值为当前处理的边的权值,并将合并的两个节点都连向新建的节点,那么就可以得

算法学习笔记(3.1): ST算法

ST表 在RMQ(区间最值)问题中,著名的ST算法就是倍增的产物。ST算法可以在 \(O(n \log n)\) 的时间复杂度能预处理后,以 \(O(1)\) 的复杂度在线回答区间 [l, r] 内的最值。 当然,ST表不支持动态修改,如果需要动态修改,线段树是一种良好的解决方案,是 \(O(n)\

C++算法之旅、09 力扣篇 | 常见面试笔试题(上)算法小白专用

算法学习笔记,记录容易忘记的知识点和难题。详解时空复杂度、50道常见面试笔试题,包括数组、单链表、栈、队列、字符串、哈希表、二叉树、递归、迭代、分治类型题目,均带思路与C++题解

C++算法之旅、08 基础篇 | 质数、约数

算法学习笔记,记录容易忘记的知识点和难题。试除法、分解质因数、筛质数、约数个数、约数之和、最大公约数

算法学习笔记(1): 欧几里得算法及其扩展

扩展欧几里得算法详解 在了解扩欧之前我们应该先了解欧几里得算法 欧几里得算法 这是一个递归求最大公约数(greatest common divisor)的方法 $$ gcd(a, b) = gcd(b, a % b) $$ 可以通过一个类似的简单公式推导而来 好像叫做辗转相减法来着? $$ gcd(