AGC055

agc055 · 浏览次数 : 9

小编点评

**A. ABC Identity翻译:** 给定长度为 \\(3n\\) 的序列,其中字母 ABC 各有 \\(n\\) 个。一个合法序列 \\(T\\) 满足以下条件: * \\(T_1 = T_2 = ... = T_k\\) * \\(T_{k + 1} = T_{k + 2} = ... = T_{2k}\\) * \\(T_{2k + 1} = T_{2k + 2} = ... = T_{3k}\\) * \\(T_1, T_{k + 1}, T_{2k + 1}\\) 互不相同。 **B. ABC Supremacy考虑如下转化:** \\[A \\overline{ABC} \\to \\overline{ABC} A \\\\B \\overline{ABC} \\to \\overline{ABC} B \\\\C \\overline{ABC} \\to \\overline{ABC} C\\] **C. Weird LIS方法1:组合参考 AGC055C - Legitimity 的博客 - 洛谷博客和补充 题解:AGC55C Weird LIS - Edward1002001 的博客 - 洛谷博客** **D. ABC Ultimatum一道猜结论的题。观察三个串,有 ABC,BCA,CAB,我们考察能划分成这三种串的串的性质。** **E. Set Merging神仙思路题。我们把整个序列看作一个排列,每一次的合并相当于交换排列中的两个位置。**

正文

AGC055

第一次打AGC,好难受。

T1 看了一眼题解,没看懂……但是还是做出来了。

T2 感觉比 T1 简单,构造很好猜。

其他的没时间思考,T1 花了我 2h30min,难受。

A.ABC Identity


翻译

给定长度为 \(3n\) 的序列,其中字母 ABC 各有 \(n\) 个。

一个合法序列 \(T\) 满足以下条件:

  • 其长度为 \(3k (1 \le k \le n)\)

  • \(T_1 = T_2 = ... = T_k\)

  • \(T_{k + 1} = T_{k + 2} = ... = T_{2k}\)

  • \(T_{2k + 1} = T_{2k + 2} = ... = T_{3k}\)

  • \(T_1, T_{k + 1}, T_{2k + 1}\) 互不相同。

求一个把这个序列分成不多于 \(6\) 个合法的序列的方案。

可以证明,一定存在一种合法的划分。


分三段考虑。

std 做法是关于 ABC 的 6 种排列,依次枚举,贪心选择。

我在考场上是:先考虑前两半,相异配对,网络流解决。

不会产生相同配对的正确性?由于是相异配对,如果产生相同配对,则某一个一定超过了 \(n\) 个,不符合题意。所以网络流可以解决,贪心选择没问题。

网络流只有 \(6 + 2\) 个点,所以可以看作常数,复杂度 + O(1)

所以整体复杂度 \(O(n)\)

妈的,傻逼网络流,真的服……

B.ABC Supremacy

考虑如下转化:

\[A \overline{ABC} \to \overline{ABC} A \\ B \overline{ABC} \to \overline{ABC} B \\ C \overline{ABC} \to \overline{ABC} C \]

也就是我们贪心把所有的 \(\overline{ABC}\) 放在最前面即可。(相当于删除)

由于拼接后也可能存在 \(\overline{ABC}\),所以利用栈的思想处理。

复杂度 \(O(n)\)

C.Weird LIS

方法1:组合

参考 AGC055C - Legitimity 的博客 - 洛谷博客 和补充 题解:AGC55C Weird LIS - Edward1002001 的博客 - 洛谷博客

这里再做一点说明。

  • 无用点为什么不可连续?考虑 4 3 5 2 1 7 6,也就是 非 非 必 无 无 非 非。这个排列和 2 1 3 7 6 5 4 ,也就是 非 非 必 非 非 非 非 是等价的。也就是说,连续的 会使得我们重复计数。所以不可以连续。

  • ans 初始设置?其实枚举的是没有必经点的情况(全是非必经点),需要满足:

    • \(k \le \lfloor \frac n2 \rfloor\)

    • \(k \le m\)

    • \(k \ge 2\)

    所以才有 \(\min(m, \lfloor \frac n2 \rfloor) - 1\)。但是我们还需要考虑当 \(m = n - 1\) 时,可以存在全是必经点的情况,也就是 1 2 3 ... n 的情况。

  • 为什么 \(\min(m, x + y) - \max(x, 3) + 1\)?这里枚举的是 \(k\)\(k\) 的下界确定了,因为存在 \(k - 1\),所以 \(k - 1 \ge 2 \iff k \ge 3\)

其他部分最终式子为:

\[\sum_{x = 1}^{\min(m, n - 1)} \sum_{y = 0}^{\lfloor \frac {n - x}2 \rfloor} {x + y \choose x} {x + 1 \choose n - x - 2y} (\min(m, x + y) - \max(x, 3) + 1) \]

方法2:自动机

参考 at_agc055_c Weird LIS 题解 - juruo - 洛谷博客

这里做一点解释:

  • 状态机的设定,4种状态:

    1. 除了 CAN,都能放

    2. 只能放 CAN

    3. 可以放 MUST 或者 USELESS,之后 MUST 还可以跟 MAY

    4. 可以放 MUST 或者 USELESS,之后 MUST 不可以跟 MAY

  • 为什么有状态4?因为 k 确定了红黑对的数量,而我们是贪心的把所有红黑对尽可能放在前面。而可能存在只有 非 非 无 必 的情况,所以有状态 3,通过 MUST 转移到 1,通过 USELESS 转移到 4,但是不能再来一个 MAY

D.ABC Ultimatum

一道猜结论的题。

观察三个串,有 ABCBCACAB,我们考察能划分成这三种串的串的性质。

考虑每一个字母出现的次数:由于 B 只在 BCA 中在 A 前面,其他的类似。我们考虑定义 \(M_B = \max S_B - S_A\),其他的类似。

可以发现,\(M_B \le C_{BCA}\),同理,得到 \(M_A + M_B + M_C \le C_{ABC} + C_{BCA} + C_{CAB} = N\)

这是必要条件,所以考虑证明充分性(不会。

所以我们可以设出一个 \(O(n^7)\) 的 DP,令 \(f_{a, b, c, x, y, z}\) 表示 ABC 的数量以及 \(M_A, M_B, M_C\)

不过考虑 \(a + b + c = i\) 的时候才有贡献,所以可以省一维,变为 \(O(n^6)\)

E.Set Merging

神仙思路题。

我们把整个序列看作一个排列,每一次的合并相当于交换排列中的两个位置。

而最终 \(S_i \to [ \min_{j = i}^n P_j, \max_{j = 1}^i P_j]\),一个后缀 \(\min\) 和一个前缀 \(\max\)

考虑归纳法,分 \(P_i > P_{i + 1}\) 或者 \(P_i < P_{i + 1}\) 讨论。

最终就是求合法序列的最小逆序对数。考虑贪心放置,用数状数组求。

总复杂度 \(O(n + n \log n)\),可以通过6指针的方法优化到 \(O(n + n)\)

与AGC055相似的内容: