碰撞检测是三维场景中常见的需求,Three.js是常用的前端三维JavaScript库,本文就如何在Three.js中进行碰撞检测进行记述
主要使用到的方法有:
Raycaster
用于进行raycasting(光线投射), 光线投射用于进行鼠标拾取(在三维空间中计算出鼠标移过了什么物体)
在某些情况下也能用于初略的碰撞检测
示例如下:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<style>
html,
body,
canvas {
height: 100%;
width: 100%;
margin: 0;
}
</style>
</head>
<body>
<canvas id="canvas"></canvas>
<script type="importmap">
{
"imports": {
"three": "https://unpkg.com/three/build/three.module.js",
"three/addons/": "https://unpkg.com/three/examples/jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import Stats from 'three/addons/libs/stats.module.js'
const scene = new THREE.Scene();
const raycaster = new THREE.Raycaster();
const geometry = new THREE.BoxGeometry(1, 1, 1);
const material = new THREE.MeshBasicMaterial({ color: 0x0000ff });
const cube = new THREE.Mesh(geometry, material);
scene.add(cube);
// 创建性能监视器
let stats = new Stats();
// 将监视器添加到页面中
document.body.appendChild(stats.domElement)
const canvas = document.querySelector('#canvas');
const camera = new THREE.PerspectiveCamera(75, canvas.clientWidth / canvas.clientHeight, 0.1, 100000);
camera.position.set(0, 0, 10);
// 添加环境光
const ambient = new THREE.AmbientLight("#FFFFFF");
ambient.intensity = 5;
scene.add(ambient);
// 添加平行光
const directionalLight = new THREE.DirectionalLight("#FFFFFF");
directionalLight.position.set(0, 0, 0);
directionalLight.intensity = 16;
scene.add(directionalLight);
// 添加Box
const box = new THREE.BoxGeometry(1, 1, 1);
const boxMaterial = new THREE.MeshBasicMaterial({ color: 0x00ff00 });
const boxMesh = new THREE.Mesh(box, boxMaterial);
boxMesh.position.set(6, 0, 0);
scene.add(boxMesh);
const renderer = new THREE.WebGLRenderer({
canvas: document.querySelector('#canvas'),
antialias: true
});
renderer.setSize(window.innerWidth, window.innerHeight, false)
const controls = new OrbitControls(camera, renderer.domElement);
function animate() {
// 更新帧数
stats.update()
boxMesh.position.x -= 0.01;
cube.material.color.set(0x0000ff);
raycaster.set(boxMesh.position, new THREE.Vector3(-1, 0, 0).normalize());
const intersection = raycaster.intersectObject(cube);
if (intersection.length > 0) {
if (intersection[0].distance < 0.5) {
intersection[0].object.material.color.set(0xff0000);
}
}
raycaster.set(boxMesh.position, new THREE.Vector3(1, 0, 0).normalize());
const intersection2 = raycaster.intersectObject(cube);
if (intersection2.length > 0) {
if (intersection2[0].distance < 0.5) {
intersection2[0].object.material.color.set(0xff0000);
}
}
requestAnimationFrame(animate);
renderer.render(scene, camera);
}
animate();
</script>
</body>
</html>
可以看到,两个立方体在刚接触时和要分开时检测出了碰撞,但是在两个立方体接近重合时却没检测出碰撞
这是因为Raycaster使用的是一根射线来检测,射线需要起点和方向,上述例子中将起点设为绿色立方体的中心,当绿色立方体中心在蓝色立方体内时,就检测不出碰撞了
另外,射线是需要方向的,上述示例中设置为检测左右两个方向,然而方向是难以穷举的,太多的Raycaster也严重损耗性能
所以说,Raycaster在某些情况下也能用于初略的碰撞检测,然而问题是显著的
bounding box
,在Three.js中为Box3类,表示三维空间中的一个轴对齐包围盒(axis-aligned bounding box,AABB)
利用bounding box,可以用来检测物体是否相交(即,碰撞)
示例如下(和Raycaster部分的代码相比只修改了animate函数):
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<style>
html,
body,
canvas {
height: 100%;
width: 100%;
margin: 0;
}
</style>
</head>
<body>
<canvas id="canvas"></canvas>
<script type="importmap">
{
"imports": {
"three": "https://unpkg.com/three/build/three.module.js",
"three/addons/": "https://unpkg.com/three/examples/jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import Stats from 'three/addons/libs/stats.module.js'
const scene = new THREE.Scene();
const raycaster = new THREE.Raycaster();
const geometry = new THREE.BoxGeometry(1, 1, 1);
const material = new THREE.MeshBasicMaterial({ color: 0x0000ff });
const cube = new THREE.Mesh(geometry, material);
scene.add(cube);
// 创建性能监视器
let stats = new Stats();
// 将监视器添加到页面中
document.body.appendChild(stats.domElement)
const canvas = document.querySelector('#canvas');
const camera = new THREE.PerspectiveCamera(75, canvas.clientWidth / canvas.clientHeight, 0.1, 100000);
camera.position.set(0, 0, 10);
// 添加环境光
const ambient = new THREE.AmbientLight("#FFFFFF");
ambient.intensity = 5;
scene.add(ambient);
// 添加平行光
const directionalLight = new THREE.DirectionalLight("#FFFFFF");
directionalLight.position.set(0, 0, 0);
directionalLight.intensity = 16;
scene.add(directionalLight);
// 添加Box
const box = new THREE.BoxGeometry(1, 1, 1);
const boxMaterial = new THREE.MeshBasicMaterial({ color: 0x00ff00 });
const boxMesh = new THREE.Mesh(box, boxMaterial);
boxMesh.position.set(6, 0, 0);
scene.add(boxMesh);
const renderer = new THREE.WebGLRenderer({
canvas: document.querySelector('#canvas'),
antialias: true
});
renderer.setSize(window.innerWidth, window.innerHeight, false)
const controls = new OrbitControls(camera, renderer.domElement);
function animate() {
// 更新帧数
stats.update()
boxMesh.position.x -= 0.02;
const cubeBox = new THREE.Box3().setFromObject(cube);
const boxMeshBox = new THREE.Box3().setFromObject(boxMesh);
cubeBox.intersectsBox(boxMeshBox) ? cube.material.color.set(0xff0000) : cube.material.color.set(0x0000ff);
requestAnimationFrame(animate);
renderer.render(scene, camera);
}
animate();
</script>
</body>
</html>
可以看到,在Three.js中使用bounding box来检测碰撞效果还可以,当然,AABB这种bounding box是将物体用一个立方体或长方体包围起来,如果物体的形状很不规则,那么使用bounding box来检测碰撞可能是不够精细的,比如下面这个例子:
示例中绿色立方体还没撞到蓝色锥体,但是bounding box已经检测出碰撞
所以,利用bounding box来检测物体是否相交是大体可行的
Cannon.js是一个3d物理引擎,它能实现常见的碰撞检测,各种体形,接触,摩擦和约束功能
这里笔者想借助物理引擎来实现碰撞检测,当然,其他的物理引擎(如,Ammo.js,Oimo.js等)也是可以的
使用Cannon.js进行两个Cube的碰撞检测示例如下:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<style>
html,
body,
canvas {
height: 100%;
width: 100%;
margin: 0;
}
</style>
</head>
<body>
<canvas id="canvas"></canvas>
<script type="importmap">
{
"imports": {
"three": "https://unpkg.com/three/build/three.module.js",
"three/addons/": "https://unpkg.com/three/examples/jsm/"
}
}
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/cannon.js/0.6.2/cannon.js"></script>
<script type="module">
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import Stats from 'three/addons/libs/stats.module.js'
const scene = new THREE.Scene();
const world = new CANNON.World()
// 创建性能监视器
let stats = new Stats();
// 将监视器添加到页面中
document.body.appendChild(stats.domElement)
const canvas = document.querySelector('#canvas');
const camera = new THREE.PerspectiveCamera(75, canvas.clientWidth / canvas.clientHeight, 0.1, 100000);
camera.position.set(0, 0, 10);
// 添加环境光
const ambient = new THREE.AmbientLight("#FFFFFF");
ambient.intensity = 5;
scene.add(ambient);
// 添加平行光
const directionalLight = new THREE.DirectionalLight("#FFFFFF");
directionalLight.position.set(0, 0, 0);
directionalLight.intensity = 16;
scene.add(directionalLight);
// 创建第一个Cube的Three.js模型
const cubeGeometry1 = new THREE.BoxGeometry(1, 1, 1);
const cubeMaterial1 = new THREE.MeshBasicMaterial({ color: 0x0000ff });
const cube1 = new THREE.Mesh(cubeGeometry1, cubeMaterial1);
scene.add(cube1);
// 创建第一个Cube的Cannon.js刚体
const cubeShape1 = new CANNON.Box(new CANNON.Vec3(0.5, 0.5, 0.5));
const cubeBody1 = new CANNON.Body({ mass: 1, shape: cubeShape1 });
cubeBody1.position.set(1, 0, 0);
world.addBody(cubeBody1);
// 创建第二个Cube的Three.js模型
const cubeGeometry2 = new THREE.BoxGeometry(1, 1, 1);
const cubeMaterial2 = new THREE.MeshBasicMaterial({ color: 0x00ff00 });
const cube2 = new THREE.Mesh(cubeGeometry2, cubeMaterial2);
scene.add(cube2);
// 创建第二个Cube的Cannon.js刚体
const cubeShape2 = new CANNON.Box(new CANNON.Vec3(0.5, 0.5, 0.5));
const cubeBody2 = new CANNON.Body({ mass: 1, shape: cubeShape2 });
cubeBody2.position.set(-1, 0, 0);
world.addBody(cubeBody2);
// 监听碰撞事件
cubeBody2.addEventListener("collide", function (e) {
cube2.material.color.set(0xff0000);
});
const renderer = new THREE.WebGLRenderer({
canvas: document.querySelector('#canvas'),
antialias: true
});
renderer.setSize(window.innerWidth, window.innerHeight, false)
const controls = new OrbitControls(camera, renderer.domElement);
function animate() {
// 更新帧数
stats.update()
world.step(1 / 60);
cubeBody1.position.x -= 0.02;
// 更新Three.js模型的位置
cube1.position.copy(cubeBody1.position);
cube1.quaternion.copy(cubeBody1.quaternion);
cube2.position.copy(cubeBody2.position);
cube2.quaternion.copy(cubeBody2.quaternion);
requestAnimationFrame(animate);
renderer.render(scene, camera);
}
animate();
</script>
</body>
</html>
至于精确性呢,使用Cannon.js也是不错的,示例如下:
看上去,使用Cannon.js的效果是相当不错的,在追求效果的情况下使用物理引擎是不错的选择,当然,增加的编码成本、计算开销也是不少
[1] Raycaster – three.js docs (three3d.cn)
[2] Box3 – three.js docs (threejs.org)
[3] schteppe/cannon.js: A lightweight 3D physics engine written in JavaScript. (github.com)
[4] Three.js - 物体碰撞检测(二十六) - 掘金 (juejin.cn)
[5] Three.js 进阶之旅:物理效果-碰撞和声音 💥 - 掘金 (juejin.cn)
[6] pmndrs/cannon-es: 💣 A lightweight 3D physics engine written in JavaScript. (github.com)