[XXL-JOB] 分布式调度XXL-JOB快速上手

xxl,job,分布,式调度,快速,上手 · 浏览次数 : 47

小编点评

内容生成时需要带简单的排版,包括以下内容: 1. 标题: 2. 概述: 3. 任务配置信息: 4. 分片概念: 5. 案例改造成任务分片Mapper增加查询方法: 6. 任务类方法@XxlJob: 7. 任务设置  。归纳总结

正文

1.概述

1.1什么是任务调度

我们可以思考一下下面业务场景的解决方案:

  • 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券

  • 某银行系统需要在信用卡到期还款日的前三天进行短信提醒

  • 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总

以上场景就是任务调度所需要解决的问题

任务调度是为了自动完成特定任务,在约定的特定时刻去执行任务的过程

1.2 为什么需要分布式调度

使用Spring中提供的注解@Scheduled,也能实现调度的功能

在业务类中方法中贴上这个注解,然后在启动类上贴上@EnableScheduling注解

@Scheduled(cron = "0/20 * * * * ? ")
 public void doWork(){
     //doSomething   
 }

感觉Spring给我们提供的这个注解可以完成任务调度的功能,好像已经完美解决问题了,为什么还需要分布式呢?

主要有如下这几点原因:

  1. 高可用:单机版的定式任务调度只能在一台机器上运行,如果程序或者系统出现异常就会导致功能不可用。

  2. 防止重复执行: 在单机模式下,定时任务是没什么问题的。但当我们部署了多台服务,同时又每台服务又有定时任务时,若不进行合理的控制在同一时间,只有一个定时任务启动执行,这时,定时执行的结果就可能存在混乱和错误了

  3. 单机处理极限:原本1分钟内需要处理1万个订单,但是现在需要1分钟内处理10万个订单;原来一个统计需要1小时,现在业务方需要10分钟就统计出来。你也许会说,你也可以多线程、单机多进程处理。的确,多线程并行处理可以提高单位时间的处理效率,但是单机能力毕竟有限(主要是CPU、内存和磁盘),始终会有单机处理不过来的情况。

1.3 XXL-JOB介绍

XXL-Job:是大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展

大众点评目前已接入XXL-JOB,该系统在内部已调度约100万次,表现优异。

目前已有多家公司接入xxl-job,包括比较知名的大众点评,京东,优信二手车,360金融 (360),联想集团 (联想),易信 (网易)等等

官网地址 https://www.xuxueli.com/xxl-job/

系统架构图

设计思想

将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。

将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。

因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性;

2.快速入门

2.1 下载源码

源码下载地址:

https://github.com/xuxueli/xxl-job

https://gitee.com/xuxueli0323/xxl-job

2.1 初始化调度数据库

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

“调度数据库初始化SQL脚本” 位置为:

/xxl-job/doc/db/tables_xxl_job.sql

2.2 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

2.3 配置部署调度中心

2.3.1 调度中心配置

修改xxl-job-admin项目的配置文件application.properties,把数据库账号密码配置上

### web
server.port=8080
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://192.168.202.200:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=WolfCode_2017
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
spring.datasource.hikari.validation-timeout=1000

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.from=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=default_token

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

2.3.2 部署项目

运行XxlJobAdminApplication程序即可.

调度中心访问地址: http://localhost:8080/xxl-job-admin

默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

至此“调度中心”项目已经部署成功。

2.4 配置部署执行器项目

2.4.1 添加Maven依赖

创建SpringBoot项目并且添加如下依赖:

<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.3.1</version>
</dependency>

2.4.2 执行器配置

在配置文件中添加如下配置:

### 调度中心部署根地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### 执行器通讯TOKEN [选填]:非空时启用;
xxl.job.accessToken=default_token
### 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
xxl.job.executor.appname=xxl-job-executor-sample
### 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
xxl.job.executor.address=
### 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
xxl.job.executor.ip=127.0.0.1
### 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
xxl.job.executor.port=9999
### 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
xxl.job.executor.logretentiondays=30

2.4.3 添加执行器配置

创建XxlJobConfig配置对象:

@Configuration
public class XxlJobConfig {
    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;
    @Value("${xxl.job.accessToken}")
    private String accessToken;
    @Value("${xxl.job.executor.appname}")
    private String appname;
    @Value("${xxl.job.executor.address}")
    private String address;
    @Value("${xxl.job.executor.ip}")
    private String ip;
    @Value("${xxl.job.executor.port}")
    private int port;
    @Value("${xxl.job.executor.logpath}")
    private String logPath;
    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;

    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    }
}

2.4.4 添加任务处理类

添加任务处理类,交给Spring容器管理,在处理方法上贴上@XxlJob注解

@Component
public class SimpleXxlJob {
    @XxlJob("demoJobHandler")
    public void demoJobHandler() throws Exception {
        System.out.println("执行定时任务,执行时间:"+new Date());
    }
}

2.5 运行HelloWorld程序

2.5.1 任务配置&触发执行

登录调度中心,在任务管理中新增任务,配置内容如下:

新增后界面如下:

 接着启动定时调度任务

2.5.2 查看日志

在调度中心的调度日志中就可以看到,任务的执行结果.

 管控台也可以看到任务的执行信息.

2.6 GLUE模式(Java)

任务以源码方式维护在调度中心,支持通过Web IDE在线更新,实时编译和生效,因此不需要指定JobHandler。

( “GLUE模式(Java)” 运行模式的任务实际上是一段继承自IJobHandler的Java类代码,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务.

添加Service

@Service
public class HelloService {
    public void methodA(){
        System.out.println("执行MethodA的方法");
    }
    public void methodB(){
        System.out.println("执行MethodB的方法");
    }
}

添加任务配置

 通过GLUE IDE在线编辑代码

 编写内容如下:

package com.xxl.job.service.handler;

import cn.wolfcode.xxljobdemo.service.HelloService;
import com.xxl.job.core.handler.IJobHandler;
import org.springframework.beans.factory.annotation.Autowired;

public class DemoGlueJobHandler extends IJobHandler {
    @Autowired
    private HelloService helloService;
    @Override
    public void execute() throws Exception {
        helloService.methodA();
    }
}

启动并执行程序

2.6 执行器集群

2.6.1 集群环境搭建

在IDEA中设置SpringBoot项目运行开启多个集群

 

启动两个SpringBoot程序,需要修改Tomcat端口和执行器端口

  • Tomcat端口8090程序的命令行参数如下:
-Dserver.port=8090 -Dxxl.job.executor.port=9998
  • Tomcat端口8090程序的命令行参数如下:
-Dserver.port=8091 -Dxxl.job.executor.port=9999

在任务管理中,修改路由策略,修改成轮询

 重新启动,我们可以看到效果是,定时任务会在这两台机器中进行轮询的执行

  • 8090端口的控制台日志如下:

  •  8091端口的控制台日志如下:

 

2.6.2 调度路由算法讲解

当执行器集群部署时,提供丰富的路由策略,包括:

  1. FIRST(第一个):固定选择第一个机器

  2. LAST(最后一个):固定选择最后一个机器;

  3. ROUND(轮询):依次的选择在线的机器发起调度

  4. RANDOM(随机):随机选择在线的机器;

  5. CONSISTENT_HASH(一致性HASH):

    每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  6. LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  7. LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  8. FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  9. BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  10. SHARDING_BROADCAST(分片广播):

    广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

3. 分片功能讲解

3.1 案例需求讲解

需求:我们现在实现这样的需求,在指定节假日,需要给平台的所有用户去发送祝福的短信.

3.1.1 初始化数据

在数据库中导入xxl_job_demo.sql数据

3.1.2 集成Druid&MyBatis

添加依赖

<!--MyBatis驱动-->
<dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>1.2.0</version>
</dependency>
<!--mysql驱动-->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
</dependency>
<!--lombok依赖-->
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>

添加配置

spring.datasource.url=jdbc:mysql://localhost:3306/xxl_job_demo?serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=UTF-8
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.username=root
spring.datasource.password=WolfCode_2017

添加实体类

@Setter
@Getter
public class UserMobilePlan {
    private Long id;//主键
    private String username;//用户名
    private String nickname;//昵称
    private String phone;//手机号码
    private String info;//备注
}

添加Mapper处理类

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

3.1.3 业务功能实现

任务处理方法实现

@XxlJob("sendMsgHandler")
public void sendMsgHandler() throws Exception{
    List<UserMobilePlan> userMobilePlans = userMobilePlanMapper.selectAll();
    System.out.println("任务开始时间:"+new Date()+",处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            //模拟发送短信动作
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务配置信息

3.2 分片概念讲解

比如我们的案例中有2000+条数据,如果不采取分片形式的话,任务只会在一台机器上执行,这样的话需要20+秒才能执行完任务.

如果采取分片广播的形式的话,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

获取分片参数方式:

// 可参考Sample示例执行器中的示例任务"ShardingJobHandler"了解试用 
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();

通过这两个参数,我们可以通过求模取余的方式,分别查询,分别执行,这样的话就可以提高处理的速度.

之前2000+条数据只在一台机器上执行需要20+秒才能完成任务,分片后,有两台机器可以共同完成2000+条数据,每台机器处理1000+条数据,这样的话只需要10+秒就能完成任务

3.3 案例改造成任务分片

Mapper增加查询方法

@Mapper
public interface UserMobilePlanMapper {
    @Select("select * from t_user_mobile_plan where mod(id,#{shardingTotal})=#{shardingIndex}")
    List<UserMobilePlan> selectByMod(@Param("shardingIndex") Integer shardingIndex,@Param("shardingTotal")Integer shardingTotal);
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();
}

任务类方法

@XxlJob("sendMsgShardingHandler")
public void sendMsgShardingHandler() throws Exception{
    System.out.println("任务开始时间:"+new Date());
    int shardTotal = XxlJobHelper.getShardTotal();
    int shardIndex = XxlJobHelper.getShardIndex();
    List<UserMobilePlan> userMobilePlans = null;
    if(shardTotal==1){
        //如果没有分片就直接查询所有数据
        userMobilePlans = userMobilePlanMapper.selectAll();
    }else{
        userMobilePlans = userMobilePlanMapper.selectByMod(shardIndex,shardTotal);
    }
    System.out.println("处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->{
        try {
            TimeUnit.MILLISECONDS.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");
}

任务设置

 

 

与[XXL-JOB] 分布式调度XXL-JOB快速上手相似的内容:

[XXL-JOB] 分布式调度XXL-JOB快速上手

1.概述 1.1什么是任务调度 我们可以思考一下下面业务场景的解决方案: 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券 某银行系统需要在信用卡到期还款日的前三天进行短信提醒 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总 以上场景就是任务调度所需要解决的问题 任务

说说XXLJob分片任务实现原理?

XXL Job 是一个开源的分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展的分布式任务调度框架。 这两天咱们开发的 AI Cloud 项目中,也使用到了 XXL Job 来执行分布式任务的调度,可以看出它的部署和使用虽然步骤很多,但用起来还是很简单的。 因为其本身为 Spri

[转帖]一文带你搞懂xxl-job(分布式任务调度平台)

https://zhuanlan.zhihu.com/p/625060354 前言 本篇文章主要记录项目中遇到的 xxl-job 的实战,希望能通过这篇文章告诉读者们什么是 xxl-job 以及怎么使用 xxl-job 并分享一个实战案例。 那么下面先说明什么是 xxl-job 以及为什么要使用它。

XXL-JOB定时任务框架(Oracle定制版)

xxl-job是一个轻量级、易扩展的分布式任务调度平台,能够快速开发和简单学习。开放源代码并被多家公司线上产品使用,开箱即用。尽管其确实非常好用,但我在工作中使用的是Oracle数据库,因为xxl-job是针对MySQL设计的,所以使用起来需要进行一些魔改。为了方便后人使用,我已经创建了许多SQL和自增序列,并将其整合到了xxl-job-2.3.0版本中,环境已经在线上正常使用了,所以可以放心使用

开源分布式任务调度系统就选:DolphinScheduler

分布式任务调度这个话题是每个后端开发和大数据开发都会接触的话题。因为应用场景的广泛,所以有很多开源项目专注于解决这类问题,比如我们熟知的xxl-job。 那么今天要给大家推荐的则是另一个更为强大的开源项目:DolphinScheduler 介绍 DolphinScheduler是一款开源的分布式任务

一种异步延迟队列的实现方式

目前系统中有很多需要用到延时处理的功能:支付超时取消、排队超时、短信、微信等提醒延迟发送、token刷新、会员卡过期等等。通过延时处理,极大的节省系统的资源,不必轮询数据库处理任务。 目前大部分功能通过定时任务完成,定时任务还分使用quartz及xxljob两种类型轮询时间短,每秒执行一次,对数据库造成一定的压力,并且会有1秒的误差。轮询时间久,如30分钟一次,03:01插入一条数据,正常3:3

当 xxl-job 遇上 docker → 它晕了,我也乱了!

开心一刻 公交车上,一位老大爷睡着了,身体依靠在背后的一位年轻小伙子身上 小伙子一直保持站姿十几分钟,直到老人下车 这位在校大学生,接受采访时说:”当时就觉得背后这个人很轻盈,以为是个姑娘!“ 前提准备 对 xxl-job、docker 要有基本的了解 xxl-job 直接看官网:xxl-ob,你想

当 xxl-job 遇上 docker → 它晕了,但我不能乱!

开心一刻 某次住酒店,晚上十点多叫了个外卖 过了一阵儿,外卖到了 因为酒店电梯要刷卡,所以我下楼去接 到了电梯口看到个模样不错的妹纸 我:是你么? 妹纸愣了下:嗯! 于是拉上进电梯回房间,正准备开始呢 我俩的电话同时响了 按下接听键,一男一女同时问:我到电梯口了,你人呢? 尴尬了,取错外卖了 然后一

[XXL-JOB] 项目集成-Framework

1、导入pom坐标 com.hbasesoft.framework framework-job-core com.

SpringBoot整合XXLJob

目录XXLJob简介特性模块安装调度中心初始化数据库配置启动整合执行器pomymlXxlJobConfig启动执行器实践简单的定时任务在执行器创建任务在调度中心创建执行器在调度中心创建任务带前置和后置处理的定时任务XxlJob注解详解创建带前(后)置处理的任务父子任务父子执行器关联父子任务执行器侧l