论文复现|Panoptic Deeplab(全景分割PyTorch)

论文,复现,panoptic,deeplab,全景,分割,pytorch · 浏览次数 : 165

小编点评

# 配置参数 CONFIG_PATH = os.path.join(fname, "configs/config.yaml") CONFIG_CMD = '--config-file ' + CONFIG_PATH # 数据路径 requirements_dir = os.path.join(project_dir, "requirements.txt") detectron2_dir = os.path.join(project_dir, "detectron2") panopticapi_dir = os.path.join(project_dir, "panopticapi") cityscapesscripts_dir = os.path.join(project_dir, "cityscapesscripts") # 训练脚本 SCRIPT_PATH = os.path.join(project_dir, "tools_d2/train_panoptic_deeplab.py") # 训练参数 start = time.time() ret = os.system(SCRIPT_PATH + " >out.txt") if ret == 0: print("success")else: print("fail") end_time = time.time() print("done") print(end_time - start) # 模型测试 img_path = r'/home/ma-user/work/panoptic-deeplab/cityscapes/leftImg8bit/val/frankfurt/frankfurt_000000_003920_leftImg8bit.png' # 模型加载 my_model = ModelClass(model_path) # 预测结果 result = my_model.predict(img_path) # 打印结果 print(result)

正文

摘要:这是发表于CVPR 2020的一篇论文的复现模型。

本文分享自华为云社区《Panoptic Deeplab(全景分割PyTorch)》,作者:HWCloudAI 。

这是发表于CVPR 2020的一篇论文的复现模型,B. Cheng et al, “Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation”, CVPR 2020,此模型在原论文的基础上,使用HRNet作为backbone,得到了高于原论文的精度,PQ达到了63.7%,mIoU达到了80.3%,AP达到了37.3%。该算法会载入Cityscapes上的预训练模型(HRNet),我们提供了训练代码和可用于训练的模型,用于实际场景的微调训练。训练后生成的模型可直接在ModelArts平台部署成在线服务。

具体算法介绍:https://marketplace.huaweicloud.com/markets/aihub/modelhub/detail/?id=33d3239f-8f0b-4432-a842-f787662ed6a0

注意事项:

1.本案例使用框架:PyTorch1.4.0

2.本案例使用硬件:GPU: 1*NVIDIA-V100NV32(32GB) | CPU: 8 核 64GB

3.运行代码方法: 点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码

4.JupyterLab的详细用法: 请参考《ModelAtrs JupyterLab使用指导》

5.碰到问题的解决办法: 请参考《ModelAtrs JupyterLab常见问题解决办法》

1.下载数据和代码

运行下面代码,进行数据和代码的下载

本案例使用cityscapes数据集。

import os
import moxing as mox
# 数据代码下载
mox.file.copy_parallel('s3://obs-aigallery-zc/algorithm/panoptic-deeplab','./panoptic-deeplab')

2.模型训练

2.1依赖库加载

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
root_path = './panoptic-deeplab/'
os.chdir(root_path)
# 获取当前目录结构信息,以便进行代码调试
print('os.getcwd():', os.getcwd())
import time
import argparse
import time
import datetime
import math
import sys
import shutil
import moxing as mox # ModelArts上专用的moxing模块,可用于与OBS的数据交互,API文档请查看:https://github.com/huaweicloud/ModelArts-Lab/tree/master/docs/moxing_api_doc
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

2.2训练参数设置

parser = argparse.ArgumentParser(description='Panoptic Deeplab')
parser.add_argument('--training_dataset', default='/home/ma-user/work/panoptic-deeplab/', help='Training dataset directory') # 在ModelArts中创建算法时,必须进行输入路径映射配置,输入映射路径的前缀必须是/home/work/modelarts/inputs/,作用是在启动训练时,将OBS的数据拷贝到这个本地路径中供本地代码使用。
parser.add_argument('--train_url', default='./output', help='the path to save training outputs') # 在ModelArts中创建训练作业时,必须指定OBS上的一个训练输出位置,训练结束时,会将输出映射路径拷贝到该位置
parser.add_argument('--num_gpus',  default=1, type=int, help='num of GPUs to train')
parser.add_argument('--eval', default='False', help='whether to eval')
parser.add_argument('--load_weight', default='trained_model/model/model_final.pth',type=str) # obs路径 断点模型 pth文件 如果是评估 则是相对于src的路径
parser.add_argument('--iteration', default=100, type=int)
parser.add_argument('--learning_rate', default=0.001, type=float)
parser.add_argument('--ims_per_batch', default=8, type=int)
args, unknown = parser.parse_known_args() # 必须将parse_args改成parse_known_args,因为在ModelArts训练作业中运行时平台会传入一个额外的init_method的参数
# dir
fname = os.getcwd()
project_dir = os.path.join(fname, "panoptic-deeplab")
detectron2_dir = os.path.join(fname, "detectron2-0.3+cu102-cp36-cp36m-linux_x86_64.whl")
panopticapi_dir = os.path.join(fname, "panopticapi-0.1-py3-none-any.whl")
cityscapesscripts_dir = os.path.join(fname, "cityscapesScripts-2.1.7-py3-none-any.whl")
requirements_dir = os.path.join(project_dir, "requirements.txt") 
output_dir = "/home/work/modelarts/outputs/train_output" 
# config strings
evalpath = ''
MAX_ITER = 'SOLVER.MAX_ITER ' + str(args.iteration+90000)
BASE_LR = 'SOLVER.BASE_LR ' + str(args.learning_rate)
IMS_PER_BATCH = 'SOLVER.IMS_PER_BATCH ' + str(args.ims_per_batch)
SCRIPT_PATH = os.path.join(project_dir, "tools_d2/train_panoptic_deeplab.py") 
CONFIG_PATH = os.path.join(fname, "configs/config.yaml")
CONFIG_CMD = '--config-file ' + CONFIG_PATH
EVAL_CMD = ''
GPU_CMD = ''
OPTS_CMD = MAX_ITER + ' ' + BASE_LR + ' ' + IMS_PER_BATCH
RESUME_CMD = ''
#functions
def merge_cmd(scirpt_path, config_cmd, gpu_cmd, eval_cmd, resume_cmd, opts_cmd):
 return "python " + scirpt_path + " "+ config_cmd + " " + gpu_cmd + " " + eval_cmd + " " + resume_cmd + " " + OPTS_CMD
if args.eval == 'True':
 assert args.load_weight, 'load_weight empty when trying to evaluate' # 如果评估时为空,则报错
 if args.load_weight != 'trained_model/model/model_final.pth':
 #将model拷贝到本地,并获取模型路径
 modelpath, modelname = os.path.split(args.load_weight)
 mox.file.copy_parallel(args.load_weight, os.path.join(fname, modelname))
 evalpath = os.path.join(fname,modelname)
 else:
 evalpath = os.path.join(fname,'trained_model/model/model_final.pth')
    EVAL_CMD = '--eval-only MODEL.WEIGHTS ' + evalpath
else:
    GPU_CMD = '--num-gpus ' + str(args.num_gpus)
 if args.load_weight:
        RESUME_CMD = '--resume'
 if args.load_weight != 'trained_model/model/model_final.pth':
 modelpath, modelname = os.path.split(args.load_weight)
 mox.file.copy_parallel(args.load_weight, os.path.join('/cache',modelname))
 with open('/cache/last_checkpoint','w') as f: #创建last_checkpoint文件
 f.write(modelname)
 f.close()
 else:
 os.system('cp ' + os.path.join(fname, 'trained_model/model/model_final.pth') + ' /cache/model_final.pth')
 with open('/cache/last_checkpoint','w') as f: #创建last_checkpoint文件
 f.write('model_final.pth')
 f.close()
os.environ['DETECTRON2_DATASETS'] = args.training_dataset #添加数据库路径环境变量
cmd = merge_cmd(SCRIPT_PATH, CONFIG_CMD, GPU_CMD, EVAL_CMD, RESUME_CMD, OPTS_CMD)
# os.system('mkdir -p ' + args.train_url)
print('*********Train Information*********')
print('Run Command: ' + cmd)
print('Num of GPUs: ' + str(args.num_gpus))
print('Evaluation: ' + args.eval)
if args.load_weight:
 print('Load Weight: ' + args.load_weight)
else:
 print('Load Weight: None (train from scratch)')
print('Iteration: ' + str(args.iteration))
print('Learning Rate: ' + str(args.learning_rate))
print('Images Per Batch: ' + str(args.ims_per_batch))

2.3安装依赖库

安装依赖库需要几分钟,请耐心等待

def install_dependecies(r,d, p, c):
 os.system('pip uninstall pytorch> out1.txt')
 os.system('pip install  torch==1.7.0> out2.txt')
 os.system('pip install --upgrade pip')
 os.system('pip install --upgrade numpy')
 os.system('pip install torchvision==1.7.0> out3.txt')
 os.system('pip install pydot')
 os.system('pip install --upgrade pycocotools')
 os.system('pip install tensorboard')
 os.system('pip install -r ' + r + ' --ignore-installed PyYAML') 
 os.system('pip install ' + d) 
 os.system('pip install ' + p)
 os.system('pip install ' + c)
 os.system('pip install pyyaml ==5.1.0')
# 安装依赖
print('*********Installing Dependencies*********')
install_dependecies(requirements_dir,detectron2_dir, panopticapi_dir, cityscapesscripts_dir)
*********Installing Dependencies*********

2.4开始训练

print('*********Training Begin*********')
print(cmd)
start = time.time()
ret = os.system(cmd+ " >out.txt")
if ret == 0:
 print("success")
else:
 print('fail')
end_time=time.time()
print('done')
print(end_time-start)
if args.eval == 'False':
 os.system('mv /cache/model_final.pth ' + os.path.join(fname, 'output/model_final.pth')) #/cache模型移动到输出文件夹
if os.path.exists(os.path.join(fname, 'pred_results')):
 os.system('mv ' + os.path.join(fname, 'pred_results') + ' ' + args.train_url)

训练完成之后,可以在out.txt中看运行日志
在./panoptic-deeplab/output/pred_results/文件目录下,有该模型全景分割,实例分割,语义分割的评估结果

3.模型测试

3.1加载测试函数

from test import *

3.2开始预测

if __name__ == '__main__':
 img_path = r'/home/ma-user/work/panoptic-deeplab/cityscapes/leftImg8bit/val/frankfurt/frankfurt_000000_003920_leftImg8bit.png' # TODO 修改测试图片路径
 model_path = r'/home/ma-user/work/panoptic-deeplab/output/model_final.pth' # TODO 修改模型路径
 my_model = ModelClass(model_path)
    result = my_model.predict(img_path)
 print(result)

 

点击关注,第一时间了解华为云新鲜技术~

与论文复现|Panoptic Deeplab(全景分割PyTorch)相似的内容:

论文复现|Panoptic Deeplab(全景分割PyTorch)

摘要:这是发表于CVPR 2020的一篇论文的复现模型。 本文分享自华为云社区《Panoptic Deeplab(全景分割PyTorch)》,作者:HWCloudAI 。 这是发表于CVPR 2020的一篇论文的复现模型,B. Cheng et al, “Panoptic-DeepLab: A Si

DVT:华为提出动态级联Vision Transformer,性能杠杠的 | NeurIPS 2021

论文主要处理Vision Transformer中的性能问题,采用推理速度不同的级联模型进行速度优化,搭配层级间的特征复用和自注意力关系复用来提升准确率。从实验结果来看,性能提升不错 来源:晓飞的算法工程笔记 公众号 论文: Not All Images are Worth 16x16 Words:

ScaleDet:AWS 基于标签相似性提出可扩展的多数据集目标检测器 | CVPR 2023

论文提出了一种可扩展的多数据集目标检测器(ScaleDet),可通过增加训练数据集来扩大其跨数据集的泛化能力。与现有的主要依靠手动重新标记或复杂的优化来统一跨数据集标签的多数据集学习器不同,论文引入简单且可扩展的公式来为多数据集训练产生语义统一的标签空间,通过视觉文本对齐进行训练,能够学习跨数据集的

论文复现丨基于ModelArts进行图像风格化绘画

摘要:这个 notebook 基于论文「Stylized Neural Painting, arXiv:2011.08114.」提供了最基本的「图片生成绘画」变换的可复现例子。 本文分享自华为云社区《基于ModelArts进行图像风格化绘画》,作者: HWCloudAI 。 项目首页 | GitHu

论文复现丨基于ModelArts实现Text2SQL

摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。 本文分享自华为云社区《基于ModelArts实现Text2SQL》,作者:HWCloudAI。 M-SQL: Multi-Task Representation Learni

FCOS论文复现:通用物体检测算法

摘要:本案例代码是FCOS论文复现的体验案例,此模型为FCOS论文中所提出算法在ModelArts + PyTorch框架下的实现。本代码支持FCOS + ResNet-101在MS-COCO数据集上完整的训练和测试流程 本文分享自华为云社区《通用物体检测算法 FCOS(目标检测/Pytorch)》

CartoonGAN论文复现:如何将图像动漫化

摘要:本案例是 CartoonGAN: Generative Adversarial Networks for Photo Cartoonization的论文复现案例。 本文分享自华为云社区《cartoongan 图像动漫化》,作者: HWCloudAI 。 本案例是 CartoonGAN: Gen

R-Drop论文复现与理论讲解

摘要:基于 Dropout 的这种特殊方式对网络带来的随机性,研究员们提出了 R-Drop 来进一步对(子模型)网络的输出预测进行了正则约束。 本文分享自华为云社区《R-Drop论文复现与理论讲解》,作者: 李长安。 R-Drop: Regularized Dropout for Neural Ne

实践案例丨CenterNet-Hourglass论文复现

摘要:本案例是CenterNet-Hourglass论文复现的体验案例,此模型是对Objects as Points 中提出的CenterNet进行结果复现。 本文分享自华为云社区《CenterNet-Hourglass (物体检测/Pytorch)》,作者:HWCloudAI。 目标检测常采用An

一文详解ATK Loss论文复现与代码实战

摘要:该方法的主要思想是使用数值较大的排在前面的梯度进行反向传播,可以认为是一种在线难例挖掘方法,该方法使模型讲注意力放在较难学习的样本上,以此让模型产生更好的效果。 本文分享自华为云社区《ATK Loss论文复现与代码实战》,作者:李长安。 损失是一种非常通用的聚合损失,其可以和很多现有的定义在单