摘要:本案例将为大家介绍视频动作识别领域的经典模型并进行代码实践。
本文分享自华为云社区《视频动作识别》,作者:HWCloudAI。实验目标
通过本案例的学习:
本案例推荐使用TensorFlow-1.13.1,需使用 GPU 运行,请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;
如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;
如果您在使用 JupyterLab 过程中碰到报错,请参考《ModelArts JupyterLab常见问题解决办法》尝试解决问题。
视频动作识别是指对一小段视频中的内容进行分析,判断视频中的人物做了哪种动作。视频动作识别与图像领域的图像识别,既有联系又有区别,图像识别是对一张静态图片进行识别,而视频动作识别不仅要考察每张图片的静态内容,还要考察不同图片静态内容之间的时空关系。比如一个人扶着一扇半开的门,仅凭这一张图片无法判断该动作是开门动作还是关门动作。
视频分析领域的研究相比较图像分析领域的研究,发展时间更短,也更有难度。视频分析模型完成的难点首先在于,需要强大的计算资源来完成视频的分析。视频要拆解成为图像进行分析,导致模型的数据量十分庞大。视频内容有很重要的考虑因素是动作的时间顺序,需要将视频转换成的图像通过时间关系联系起来,做出判断,所以模型需要考虑时序因素,加入时间维度之后参数也会大量增加。
得益于 PASCAL VOC、ImageNet、MS COCO 等数据集的公开,图像领域产生了很多的经典模型,那么在视频分析领域有没有什么经典的模型呢?答案是有的,本案例将为大家介绍视频动作识别领域的经典模型并进行代码实践。
这一步准备案例所需的源代码和数据,相关资源已经保存在 OBS 中,我们通过ModelArts SDK将资源下载到本地,并解压到当前目录下。解压后,当前目录包含 data、dataset_subset 和其他目录文件,分别是预训练参数文件、数据集和代码文件等。
import os import moxing as mox if not os.path.exists('videos'): mox.file.copy("obs://ai-course-common-26-bj4-v2/video/video.tar.gz", "./video.tar.gz") # 使用tar命令解压资源包 os.system("tar xf ./video.tar.gz") # 使用rm命令删除压缩包 os.system("rm ./video.tar.gz") INFO:root:Using MoXing-v1.17.3- INFO:root:Using OBS-Python-SDK-3.20.7
上一节课我们已经介绍了视频动作识别有 HMDB51、UCF-101 和 Kinetics 三个常用的数据集,本案例选用了 UCF-101 数据集的部分子集作为演示用数据集,接下来,我们播放一段 UCF-101 中的视频:
video_name = "./data/v_TaiChi_g01_c01.avi"
from IPython.display import clear_output, Image, display, HTML import time import cv2 import base64 import numpy as np def arrayShow(img): _,ret = cv2.imencode('.jpg', img) return Image(data=ret) cap = cv2.VideoCapture(video_name) while True: try: clear_output(wait=True) ret, frame = cap.read() if ret: tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = arrayShow(frame) display(img) time.sleep(0.05) else: break except KeyboardInterrupt: cap.release() cap.release()
在图像领域中,ImageNet 作为一个大型图像识别数据集,自 2010 年开始,使用此数据集训练出的图像算法层出不穷,深度学习模型经历了从 AlexNet 到 VGG-16 再到更加复杂的结构,模型的表现也越来越好。在识别千种类别的图片时,错误率表现如下:
在图像识别中表现很好的模型,可以在图像领域的其他任务中继续使用,通过复用模型中部分层的参数,就可以提升模型的训练效果。有了基于 ImageNet 模型的图像模型,很多模型和任务都有了更好的训练基础,比如说物体检测、实例分割、人脸检测、人脸识别等。
那么训练效果显著的图像模型是否可以用于视频模型的训练呢?答案是 yes,有研究证明,在视频领域,如果能够复用图像模型结构,甚至参数,将对视频模型的训练有很大帮助。但是怎样才能复用上图像模型的结构呢?首先需要知道视频分类与图像分类的不同,如果将视频视作是图像的集合,每一个帧将作为一个图像,视频分类任务除了要考虑到图像中的表现,也要考虑图像间的时空关系,才可以对视频动作进行分类。
为了捕获图像间的时空关系,论文 I3D 介绍了三种旧的视频分类模型,并提出了一种更有效的 Two-Stream Inflated 3D ConvNets(简称 I3D)的模型,下面将逐一简介这四种模型,更多细节信息请查看原论文。
模型使用了训练成熟的图像模型,通过卷积网络,对每一帧图像进行特征提取、池化和预测,最后在模型的末端加一个 LSTM 层(长短期记忆网络),如下图所示,这样就可以使模型能够考虑时间性结构,将上下文特征联系起来,做出动作判断。这种模型的缺点是只能捕获较大的工作,对小动作的识别效果较差,而且由于视频中的每一帧图像都要经过网络的计算,所以训练时间很长。
3D 卷积类似于 2D 卷积,将时序信息加入卷积操作。虽然这是一种看起来更加自然的视频处理方式,但是由于卷积核维度增加,参数的数量也增加了,模型的训练变得更加困难。这种模型没有对图像模型进行复用,而是直接将视频数据传入 3D 卷积网络进行训练。
Two-Stream 网络的两个流分别为 1 张 RGB 快照和 10 张计算之后的光流帧画面组成的栈。两个流都通过 ImageNet 预训练好的图像卷积网络,光流部分可以分为竖直和水平两个通道,所以是普通图片输入的 2 倍,模型在训练和测试中表现都十分出色。
上面讲到了光流,在此对光流做一下介绍。光流是什么呢?名字很专业,感觉很陌生,但实际上这种视觉现象我们每天都在经历,我们坐高铁的时候,可以看到窗外的景物都在快速往后退,开得越快,就感受到外面的景物就是 “刷” 地一个残影,这种视觉上目标的运动方向和速度就是光流。光流从概念上讲,是对物体运动的观察,通过找到相邻帧之间的相关性来判断帧之间的对应关系,计算出相邻帧画面中物体的运动信息,获取像素运动的瞬时速度。在原始视频中,有运动部分和静止的背景部分,我们通常需要判断的只是视频中运动部分的状态,而光流就是通过计算得到了视频中运动部分的运动信息。
下面是一个经过计算后的原视频及光流视频。
原视频
光流视频
新模型采取了以下几点结构改进:
最后新模型的整体结构如下图所示:
好,到目前为止,我们已经讲解了视频动作识别的经典数据集和经典模型,下面我们通过代码来实践地跑一跑其中的两个模型:C3D 模型( 3D 卷积网络)以及 I3D 模型(Two-Stream Inflated 3D ConvNets)。
我们已经在前面的 “旧模型二:3D 卷积网络” 中讲解到 3D 卷积网络是一种看起来比较自然的处理视频的网络,虽然它有效果不够好,计算量也大的特点,但它的结构很简单,可以构造一个很简单的网络就可以实现视频动作识别,如下图所示是 3D 卷积的示意图:
a) 中,一张图片进行了 2D 卷积, b) 中,对视频进行 2D 卷积,将多个帧视作多个通道, c) 中,对视频进行 3D 卷积,将时序信息加入输入信号中。
ab 中,output 都是一张二维特征图,所以无论是输入是否有时间信息,输出都是一张二维的特征图,2D 卷积失去了时序信息。只有 3D 卷积在输出时,保留了时序信息。2D 和 3D 池化操作同样有这样的问题。
如下图所示是一种 C3D 网络的变种:(如需阅读原文描述,请查看 I3D 论文 2.2 节)
C3D 结构,包括 8 个卷积层,5 个最大池化层以及 2 个全连接层,最后是 softmax 输出层。
所有的 3D 卷积核为 $ 3 × 3 × 3$ 步长为 1,使用 SGD,初始学习率为 0.003,每 150k 个迭代,除以 2。优化在 1.9M 个迭代的时候结束,大约 13epoch。
数据处理时,视频抽帧定义大小为:$ c × l × h × w,,c 为通道数量,为通道数量,l 为帧的数量,为帧的数量,h 为帧画面的高度,为帧画面的高度,w 为帧画面的宽度。3D 卷积核和池化核的大小为为帧画面的宽度。3D 卷积核和池化核的大小为 d × k × k,,d 是核的时间深度,是核的时间深度,k 是核的空间大小。网络的输入为视频的抽帧,预测出的是类别标签。所有的视频帧画面都调整大小为是核的空间大小。网络的输入为视频的抽帧,预测出的是类别标签。所有的视频帧画面都调整大小为 128 × 171 $,几乎将 UCF-101 数据集中的帧调整为一半大小。视频被分为不重复的 16 帧画面,这些画面将作为模型网络的输入。最后对帧画面的大小进行裁剪,输入的数据为 $16 × 112 × 112 $
接下来,我们将对 C3D 模型进行训练,训练过程分为:数据预处理以及模型训练。在此次训练中,我们使用的数据集为 UCF-101,由于 C3D 模型的输入是视频的每帧图片,因此我们需要对数据集的视频进行抽帧,也就是将视频转换为图片,然后将图片数据传入模型之中,进行训练。
在本案例中,我们随机抽取了 UCF-101 数据集的一部分进行训练的演示,感兴趣的同学可以下载完整的 UCF-101 数据集进行训练。
UCF-101 下载
数据集存储在目录 dataset_subset 下
如下代码是使用 cv2 库进行视频文件到图片文件的转换
import cv2 import os # 视频数据集存储位置 video_path = './dataset_subset/' # 生成的图像数据集存储位置 save_path = './dataset/' # 如果文件路径不存在则创建路径 if not os.path.exists(save_path): os.mkdir(save_path) # 获取动作列表 action_list = os.listdir(video_path) # 遍历所有动作 for action in action_list: if action.startswith(".")==False: if not os.path.exists(save_path+action): os.mkdir(save_path+action) video_list = os.listdir(video_path+action) # 遍历所有视频 for video in video_list: prefix = video.split('.')[0] if not os.path.exists(os.path.join(save_path, action, prefix)): os.mkdir(os.path.join(save_path, action, prefix)) save_name = os.path.join(save_path, action, prefix) + '/' video_name = video_path+action+'/'+video # 读取视频文件 # cap为视频的帧 cap = cv2.VideoCapture(video_name) # fps为帧率 fps = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps_count = 0 for i in range(fps): ret, frame = cap.read() if ret: # 将帧画面写入图片文件中 cv2.imwrite(save_name+str(10000+fps_count)+'.jpg',frame) fps_count += 1
此时,视频逐帧转换成的图片数据已经存储起来,为模型训练做准备。
首先,我们构建模型结构。
C3D 模型结构我们之前已经介绍过,这里我们通过 keras 提供的 Conv3D,MaxPool3D,ZeroPadding3D 等函数进行模型的搭建。
from keras.layers import Dense,Dropout,Conv3D,Input,MaxPool3D,Flatten,Activation, ZeroPadding3D from keras.regularizers import l2 from keras.models import Model, Sequential # 输入数据为 112×112 的图片,16帧, 3通道 input_shape = (112,112,16,3) # 权重衰减率 weight_decay = 0.005 # 类型数量,我们使用UCF-101 为数据集,所以为101 nb_classes = 101 # 构建模型结构 inputs = Input(input_shape) x = Conv3D(64,(3,3,3),strides=(1,1,1),padding='same', activation='relu',kernel_regularizer=l2(weight_decay))(inputs) x = MaxPool3D((2,2,1),strides=(2,2,1),padding='same')(x) x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same', activation='relu',kernel_regularizer=l2(weight_decay))(x) x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x) x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same', activation='relu',kernel_regularizer=l2(weight_decay))(x) x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x) x = Conv3D(256,(3,3,3),strides=(1,1,1),padding='same', activation='relu',kernel_regularizer=l2(weight_decay))(x) x = MaxPool3D((2,2,2),strides=(2,2,2),padding='same')(x) x = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same', activation='relu',kernel_regularizer=l2(weight_decay))(x) x = MaxPool3D((2, 2, 2), strides=(2, 2, 2), padding='same')(x) x = Flatten()(x) x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x) x = Dropout(0.5)(x) x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x) x = Dropout(0.5)(x) x = Dense(nb_classes,kernel_regularizer=l2(weight_decay))(x) x = Activation('softmax')(x) model = Model(inputs, x) Using TensorFlow backend. /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) WARNING:tensorflow:From /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
通过 keras 提供的 summary () 方法,打印模型结构。可以看到模型的层构建以及各层的输入输出情况。
model.summary()
此处输出较长,省略
通过 keras 的 input 方法可以查看模型的输入形状,shape 分别为 (batch size, width, height, frames, channels) 。
model.input <tf.Tensor 'input_1:0' shape=(?, 112, 112, 16, 3) dtype=float32>
可以看到模型的数据处理的维度与图像处理模型有一些差别,多了 frames 维度,体现出时序关系在视频分析中的影响。
接下来,我们开始将图片文件转为训练需要的数据形式。
# 引用必要的库 from keras.optimizers import SGD,Adam from keras.utils import np_utils import numpy as np import random import cv2 import matplotlib.pyplot as plt # 自定义callbacks from schedules import onetenth_4_8_12 INFO:matplotlib.font_manager:font search path ['/home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/ttf', '/home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/afm', '/home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/pdfcorefonts'] INFO:matplotlib.font_manager:generated new fontManager
参数定义
img_path = save_path # 图片文件存储位置 results_path = './results' # 训练结果保存位置 if not os.path.exists(results_path): os.mkdir(results_path)
数据集划分,随机抽取 4/5 作为训练集,其余为验证集。将文件信息分别存储在 train_list 和 test_list 中,为训练做准备。
cates = os.listdir(img_path) train_list = [] test_list = [] # 遍历所有的动作类型 for cate in cates: videos = os.listdir(os.path.join(img_path, cate)) length = len(videos)//5 # 训练集大小,随机取视频文件加入训练集 train= random.sample(videos, length*4) train_list.extend(train) # 将余下的视频加入测试集 for video in videos: if video not in train: test_list.append(video) print("训练集为:") print( train_list) print("共%d 个视频\n"%(len(train_list))) print("验证集为:") print(test_list) print("共%d 个视频"%(len(test_list)))
此处输出较长,省略
接下来开始进行模型的训练。
首先定义数据读取方法。方法 process_data 中读取一个 batch 的数据,包含 16 帧的图片信息的数据,以及数据的标注信息。在读取图片数据时,对图片进行随机裁剪和翻转操作以完成数据增广。
def process_data(img_path, file_list,batch_size=16,train=True): batch = np.zeros((batch_size,16,112,112,3),dtype='float32') labels = np.zeros(batch_size,dtype='int') cate_list = os.listdir(img_path) def read_classes(): path = "./classInd.txt" with open(path, "r+") as f: lines = f.readlines() classes = {} for line in lines: c_id = line.split()[0] c_name = line.split()[1] classes[c_name] =c_id return classes classes_dict = read_classes() for file in file_list: cate = file.split("_")[1] img_list = os.listdir(os.path.join(img_path, cate, file)) img_list.sort() batch_img = [] for i in range(batch_size): path = os.path.join(img_path, cate, file) label = int(classes_dict[cate])-1 symbol = len(img_list)//16 if train: # 随机进行裁剪 crop_x = random.randint(0, 15) crop_y = random.randint(0, 58) # 随机进行翻转 is_flip = random.randint(0, 1) # 以16 帧为单位 for j in range(16): img = img_list[symbol + j] image = cv2.imread( path + '/' + img) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (171, 128)) if is_flip == 1: image = cv2.flip(image, 1) batch[i][j][:][:][:] = image[crop_x:crop_x + 112, crop_y:crop_y + 112, :] symbol-=1 if symbol<0: break labels[i] = label else: for j in range(16): img = img_list[symbol + j] image = cv2.imread( path + '/' + img) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (171, 128)) batch[i][j][:][:][:] = image[8:120, 30:142, :] symbol-=1 if symbol<0: break labels[i] = label return batch, labels batch, labels = process_data(img_path, train_list) print("每个batch的形状为:%s"%(str(batch.shape))) print("每个label的形状为:%s"%(str(labels.shape))) 每个batch的形状为:(16, 16, 112, 112, 3) 每个label的形状为:(16,)
定义 data generator, 将数据批次传入训练函数中。
def generator_train_batch(train_list, batch_size, num_classes, img_path): while True: # 读取一个batch的数据 x_train, x_labels = process_data(img_path, train_list, batch_size=16,train=True) x = preprocess(x_train) # 形成input要求的数据格式 y = np_utils.to_categorical(np.array(x_labels), num_classes) x = np.transpose(x, (0,2,3,1,4)) yield x, y def generator_val_batch(test_list, batch_size, num_classes, img_path): while True: # 读取一个batch的数据 y_test,y_labels = process_data(img_path, train_list, batch_size=16,train=False) x = preprocess(y_test) # 形成input要求的数据格式 x = np.transpose(x,(0,2,3,1,4)) y = np_utils.to_categorical(np.array(y_labels), num_classes) yield x, y
定义方法 preprocess, 对函数的输入数据进行图像的标准化处理。
def preprocess(inputs): inputs[..., 0] -= 99.9 inputs[..., 1] -= 92.1 inputs[..., 2] -= 82.6 inputs[..., 0] /= 65.8 inputs[..., 1] /= 62.3 inputs[..., 2] /= 60.3 return inputs # 训练一个epoch大约需4分钟 # 类别数量 num_classes = 101 # batch大小 batch_size = 4 # epoch数量 epochs = 1 # 学习率大小 lr = 0.005 # 优化器定义 sgd = SGD(lr=lr, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # 开始训练 history = model.fit_generator(generator_train_batch(train_list, batch_size, num_classes,img_path), steps_per_epoch= len(train_list) // batch_size, epochs=epochs, callbacks=[onetenth_4_8_12(lr)], validation_data=generator_val_batch(test_list, batch_size,num_classes,img_path), validation_steps= len(test_list) // batch_size, verbose=1) # 对训练结果进行保存 model.save_weights(os.path.join(results_path, 'weights_c3d.h5')) WARNING:tensorflow:From /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Epoch 1/1 20/20 [==============================] - 442s 22s/step - loss: 28.7099 - acc: 0.9344 - val_loss: 27.7600 - val_acc: 1.0000
接下来我们将训练之后得到的模型进行测试。随机在 UCF-101 中选择一个视频文件作为测试数据,然后对视频进行取帧,每 16 帧画面传入模型进行一次动作预测,并且将动作预测以及预测百分比打印在画面中并进行视频播放。
首先,引入相关的库。
from IPython.display import clear_output, Image, display, HTML import time import cv2 import base64 import numpy as np
构建模型结构并且加载权重。
from models import c3d_model model = c3d_model() model.load_weights(os.path.join(results_path, 'weights_c3d.h5'), by_name=True) # 加载刚训练的模型
定义函数 arrayshow,进行图片变量的编码格式转换。
def arrayShow(img): _,ret = cv2.imencode('.jpg', img) return Image(data=ret)
进行视频的预处理以及预测,将预测结果打印到画面中,最后进行播放。
# 加载所有的类别和编号 with open('./ucfTrainTestlist/classInd.txt', 'r') as f: class_names = f.readlines() f.close() # 读取视频文件 video = './videos/v_Punch_g03_c01.avi' cap = cv2.VideoCapture(video) clip = [] # 将视频画面传入模型 while True: try: clear_output(wait=True) ret, frame = cap.read() if ret: tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) clip.append(cv2.resize(tmp, (171, 128))) # 每16帧进行一次预测 if len(clip) == 16: inputs = np.array(clip).astype(np.float32) inputs = np.expand_dims(inputs, axis=0) inputs[..., 0] -= 99.9 inputs[..., 1] -= 92.1 inputs[..., 2] -= 82.6 inputs[..., 0] /= 65.8 inputs[..., 1] /= 62.3 inputs[..., 2] /= 60.3 inputs = inputs[:,:,8:120,30:142,:] inputs = np.transpose(inputs, (0, 2, 3, 1, 4)) # 获得预测结果 pred = model.predict(inputs) label = np.argmax(pred[0]) # 将预测结果绘制到画面中 cv2.putText(frame, class_names[label].split(' ')[-1].strip(), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1) cv2.putText(frame, "prob: %.4f" % pred[0][label], (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1) clip.pop(0) # 播放预测后的视频 lines, columns, _ = frame.shape frame = cv2.resize(frame, (int(columns), int(lines))) img = arrayShow(frame) display(img) time.sleep(0.02) else: break except: print(0) cap.release()
在之前我们简单介绍了 I3D 模型,I3D 官方 github 库提供了在 Kinetics 上预训练的模型和预测代码,接下来我们将体验 I3D 模型如何对视频进行预测。
首先,引入相关的包
import numpy as np import tensorflow as tf import i3d WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue.
进行参数的定义
# 输入图片大小 _IMAGE_SIZE = 224 # 视频的帧数 _SAMPLE_VIDEO_FRAMES = 79 # 输入数据包括两部分:RGB和光流 # RGB和光流数据已经经过提前计算 _SAMPLE_PATHS = { 'rgb': 'data/v_CricketShot_g04_c01_rgb.npy', 'flow': 'data/v_CricketShot_g04_c01_flow.npy', } # 提供了多种可以选择的预训练权重 # 其中,imagenet系列模型从ImageNet的2D权重中拓展而来,其余为视频数据下的预训练权重 _CHECKPOINT_PATHS = { 'rgb': 'data/checkpoints/rgb_scratch/model.ckpt', 'flow': 'data/checkpoints/flow_scratch/model.ckpt', 'rgb_imagenet': 'data/checkpoints/rgb_imagenet/model.ckpt', 'flow_imagenet': 'data/checkpoints/flow_imagenet/model.ckpt', } # 记录类别文件 _LABEL_MAP_PATH = 'data/label_map.txt' # 类别数量为400 NUM_CLASSES = 400
定义参数:
imagenet_pretrained = True # 加载动作类型 kinetics_classes = [x.strip() for x in open(_LABEL_MAP_PATH)] tf.logging.set_verbosity(tf.logging.INFO)
构建 RGB 部分模型
rgb_input = tf.placeholder(tf.float32, shape=(1, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 3)) with tf.variable_scope('RGB', reuse=tf.AUTO_REUSE): rgb_model = i3d.InceptionI3d(NUM_CLASSES, spatial_squeeze=True, final_endpoint='Logits') rgb_logits, _ = rgb_model(rgb_input, is_training=False, dropout_keep_prob=1.0) rgb_variable_map = {} for variable in tf.global_variables(): if variable.name.split('/')[0] == 'RGB': rgb_variable_map[variable.name.replace(':0', '')] = variable rgb_saver = tf.train.Saver(var_list=rgb_variable_map, reshape=True)
构建光流部分模型
flow_input = tf.placeholder(tf.float32,shape=(1, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 2)) with tf.variable_scope('Flow', reuse=tf.AUTO_REUSE): flow_model = i3d.InceptionI3d(NUM_CLASSES, spatial_squeeze=True, final_endpoint='Logits') flow_logits, _ = flow_model(flow_input, is_training=False, dropout_keep_prob=1.0) flow_variable_map = {} for variable in tf.global_variables(): if variable.name.split('/')[0] == 'Flow': flow_variable_map[variable.name.replace(':0', '')] = variable flow_saver = tf.train.Saver(var_list=flow_variable_map, reshape=True)
将模型联合,成为完整的 I3D 模型
model_logits = rgb_logits + flow_logits
model_predictions = tf.nn.softmax(model_logits)
开始模型预测,获得视频动作预测结果。
预测数据为开篇提供的 RGB 和光流数据:
with tf.Session() as sess: feed_dict = {} if imagenet_pretrained: rgb_saver.restore(sess, _CHECKPOINT_PATHS['rgb_imagenet']) # 加载rgb流的模型 else: rgb_saver.restore(sess, _CHECKPOINT_PATHS['rgb']) tf.logging.info('RGB checkpoint restored') if imagenet_pretrained: flow_saver.restore(sess, _CHECKPOINT_PATHS['flow_imagenet']) # 加载flow流的模型 else: flow_saver.restore(sess, _CHECKPOINT_PATHS['flow']) tf.logging.info('Flow checkpoint restored') start_time = time.time() rgb_sample = np.load(_SAMPLE_PATHS['rgb']) # 加载rgb流的输入数据 tf.logging.info('RGB data loaded, shape=%s', str(rgb_sample.shape)) feed_dict[rgb_input] = rgb_sample flow_sample = np.load(_SAMPLE_PATHS['flow']) # 加载flow流的输入数据 tf.logging.info('Flow data loaded, shape=%s', str(flow_sample.shape)) feed_dict[flow_input] = flow_sample out_logits, out_predictions = sess.run( [model_logits, model_predictions], feed_dict=feed_dict) out_logits = out_logits[0] out_predictions = out_predictions[0] sorted_indices = np.argsort(out_predictions)[::-1] print('Inference time in sec: %.3f' % float(time.time() - start_time)) print('Norm of logits: %f' % np.linalg.norm(out_logits)) print('\nTop classes and probabilities') for index in sorted_indices[:20]: print(out_predictions[index], out_logits[index], kinetics_classes[index]) WARNING:tensorflow:From /home/ma-user/anaconda3/envs/TensorFlow-1.13.1/lib/python3.6/site-packages/tensorflow/python/training/saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. INFO:tensorflow:Restoring parameters from data/checkpoints/rgb_imagenet/model.ckpt INFO:tensorflow:RGB checkpoint restored INFO:tensorflow:Restoring parameters from data/checkpoints/flow_imagenet/model.ckpt INFO:tensorflow:Flow checkpoint restored INFO:tensorflow:RGB data loaded, shape=(1, 79, 224, 224, 3) INFO:tensorflow:Flow data loaded, shape=(1, 79, 224, 224, 2) Inference time in sec: 1.511 Norm of logits: 138.468643 Top classes and probabilities 1.0 41.813675 playing cricket 1.497162e-09 21.49398 hurling (sport) 3.8431236e-10 20.13411 catching or throwing baseball 1.549242e-10 19.22559 catching or throwing softball 1.1360187e-10 18.915354 hitting baseball 8.801105e-11 18.660116 playing tennis 2.4415466e-11 17.37787 playing kickball 1.153184e-11 16.627766 playing squash or racquetball 6.1318893e-12 15.996157 shooting goal (soccer) 4.391727e-12 15.662376 hammer throw 2.2134352e-12 14.9772005 golf putting 1.6307096e-12 14.67167 throwing discus 1.5456218e-12 14.618079 javelin throw 7.6690325e-13 13.917259 pumping fist 5.1929587e-13 13.527372 shot put 4.2681337e-13 13.331245 celebrating 2.7205462e-13 12.880901 applauding 1.8357015e-13 12.487494 throwing ball 1.6134511e-13 12.358444 dodgeball 1.1388395e-13 12.010078 tap dancing