一文详解RocketMQ的存储模型

一文,详解,rocketmq,存储,模型 · 浏览次数 : 142

小编点评

## RocketMQ 存储模型分析 本文分析了 RocketMQ 的消息存储模型,主要分为以下几个部分: **1. 文件存储目录** * 数据文件 (commitlog):包含消息主体和元数据,以顺序写入数据文件,方便定位。 * 消费文件 (consumequeue):用于存储消费队列消息,并引入目的提高消息消费的性能。 * 索引文件 (indexFile):提供消息索引,用于快速定位消息。 **2. 数据文件格式** * 每条消息在数据文件中写入以偏移量为命名,方便通过偏移量定位消息。 * consumequeue 文件以主题和队列名为命名,每个主题下有 30 万个条目,每个条目包含 20 个字节的消息数据。 **3. 索引文件结构** * 索引文件包含 500 万个条目、Index Linked List 和 Header。 * 索引文件用于高效地定位消息,并支持消息的恢复。 **4. 优化考虑** * 索引文件采用哈希索引,以提高查找效率。 * 为了适应发布订阅模型,文件系统设计支持多个主题和 tag 的订阅。 **5. 总结** RocketMQ 的存储模型设计巧妙地结合了多个技术,以提高存储效率、提高查询效率、支持多种订阅模式。这有助于提升 RocketMQ 的性能和可扩展性。

正文

摘要:RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型。

本文分享自华为云社区《终于弄明白了 RocketMQ 的存储模型》,作者:勇哥java实战分享。

RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型 。

1 整体概览

首先温习下 RocketMQ 架构。

整体架构中包含四种角色 :

  • Producer :消息发布的角色,Producer 通过 MQ 的负载均衡模块选择相应的 Broker 集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
  • Consumer :消息消费的角色,支持以 push 推,pull 拉两种模式对消息进行消费。
  • NameServer :名字服务是一个非常简单的 Topic 路由注册中心,其角色类似 Dubbo 中的 zookeeper ,支持 Broker 的动态注册与发现。
  • BrokerServer :Broker 主要负责消息的存储、投递和查询以及服务高可用保证 。

本文的重点在于分析 BrokerServer 的消息存储模型。我们先进入 broker 的文件存储目录 。

消息存储和下面三个文件关系非常紧密:

1.数据文件 commitlog

消息主体以及元数据的存储主体 ;

2.消费文件 consumequeue

消息消费队列,引入的目的主要是提高消息消费的性能 ;

3.索引文件 index

索引文件,提供了一种可以通过 key 或时间区间来查询消息。

RocketMQ 采用的是混合型的存储结构,Broker 单个实例下所有的队列共用一个数据文件(commitlog)来存储。

生产者发送消息至 Broker 端,然后 Broker 端使用同步或者异步的方式对消息刷盘持久化,保存至 commitlog 文件中。只要消息被刷盘持久化至磁盘文件 commitlog 中,那么生产者发送的消息就不会丢失。

Broker 端的后台服务线程会不停地分发请求并异步构建 consumequeue(消费文件)和 indexFile(索引文件)。

2 数据文件

RocketMQ 的消息数据都会写入到数据文件中, 我们称之为 commitlog 。

所有的消息都会顺序写入数据文件,当文件写满了,会写入下一个文件。

如上图所示,单个文件大小默认 1G , 文件名长度为 20 位,左边补零,剩余为起始偏移量,比如 00000000000000000000 代表了第一个文件,起始偏移量为 0 ,文件大小为1 G = 1073741824。

当第一个文件写满了,第二个文件为 00000000001073741824,起始偏移量为 1073741824,以此类推。

从上图中,我们可以看到消息是一条一条写入到文件,每条消息的格式是固定的。

这样设计有三点优势:

1、顺序写

磁盘的存取速度相对内存来讲并不快,一次磁盘 IO 的耗时主要取决于:寻道时间和盘片旋转时间,提高磁盘 IO 性能最有效的方法就是:减少随机 IO,增加顺序 IO 。


《 The Pathologies of Big Data 》这篇文章指出:内存随机读写的速度远远低于磁盘顺序读写的速度。磁盘顺序写入速度可以达到几百兆/s,而随机写入速度只有几百 KB /s,相差上千倍。

2、快速定位

因为消息是一条一条写入到 commitlog 文件 ,写入完成后,我们可以得到这条消息的物理偏移量。

每条消息的物理偏移量是唯一的, commitlog 文件名是递增的,可以根据消息的物理偏移量通过二分查找,定位消息位于那个文件中,并获取到消息实体数据。

3、通过消息 offsetMsgId 查询消息数据

消息 offsetMsgId 是由 Broker 服务端在写入消息时生成的 ,该消息包含两个部分:

    • Broker 服务端 ip + port 8个字节;
    • commitlog 物理偏移量 8个字节 。

我们可以通过消息 offsetMsgId ,定位到 Broker 的 ip 地址 + 端口 ,传递物理偏移量参数 ,即可定位该消息实体数据。

3 消费文件

在介绍 consumequeue 文件之前, 我们先温习下消息队列的传输模型-发布订阅模型 , 这也是 RocketMQ 当前的传输模型。

发布订阅模型具有如下特点:

  • 消费独立:相比队列模型的匿名消费方式,发布订阅模型中消费方都会具备的身份,一般叫做订阅组(订阅关系),不同订阅组之间相互独立不会相互影响。
  • 一对多通信:基于独立身份的设计,同一个主题内的消息可以被多个订阅组处理,每个订阅组都可以拿到全量消息。因此发布订阅模型可以实现一对多通信。

因此,rocketmq 的文件设计必须满足发布订阅模型的需求。

那么仅仅 commitlog 文件是否可以满足需求吗 ?

假如有一个 consumerGroup 消费者,订阅主题 my-mac-topic ,因为 commitlog 包含所有的消息数据,查询该主题下的消息数据,需要遍历数据文件 commitlog , 这样的效率是极其低下的。

进入 rocketmq 存储目录,显示见下图:

  1. 消费文件按照主题存储,每个主题下有不同的队列,图中 my-mac-topic 有 16 个队列 ;
  2. 每个队列目录下 ,存储 consumequeue 文件,每个 consumequeue 文件也是顺序写入,数据格式见下图。

每个 consumequeue 包含 30 万个条目,每个条目大小是 20 个字节,每个文件的大小是 30 万 * 20 = 60万字节,每个文件大小约5.72M 。和 commitlog 文件类似,consumequeue 文件的名称也是以偏移量来命名的,可以通过消息的逻辑偏移量定位消息位于哪一个文件里。

消费文件按照主题-队列来保存 ,这种方式特别适配发布订阅模型。

消费者从 broker 获取订阅消息数据时,不用遍历整个 commitlog 文件,只需要根据逻辑偏移量从 consumequeue 文件查询消息偏移量 , 最后通过定位到 commitlog 文件, 获取真正的消息数据。

这样就可以简化消费查询逻辑,同时因为同一主题下,消费者可以订阅不同的队列或者 tag ,同时提高了系统的可扩展性。

4 索引文件

每个消息在业务层面的唯一标识码要设置到 keys 字段,方便将来定位消息丢失问题。服务器会为每个消息创建索引(哈希索引),应用可以通过 topic、key 来查询这条消息内容,以及消息被谁消费。

由于是哈希索引,请务必保证key尽可能唯一,这样可以避免潜在的哈希冲突。

//订单Id   
String orderId = "1234567890"; 
message.setKeys(orderId); 

从开源的控制台中根据主题和 key 查询消息列表:

进入索引文件目录 ,如下图所以:

索引文件名 fileName 是以创建时的时间戳命名的,固定的单个 IndexFile 文件大小约为 400 M 。

IndexFile 的文件逻辑结构类似于 JDK 的 HashMap 的数组加链表结构。

索引文件主要由 Header、Slot Table (默认 500 万个条目)、Index Linked List(默认最多包含 2000万个条目)三部分组成 。

假如订单系统发送两条消息 A 和 B , 他们的 key 都是 “1234567890” ,我们依次存储消息 A , 消息 B 。

因为这两个消息的 key 的 hash 值相同,它们对应的哈希槽(深黄色)也会相同,哈希槽会保存的最新的消息 B 的索引条目序号 , 序号值是 4 ,也就是第二个深绿色条目。

而消息 B 的索引条目信息的最后 4 个字节会保存上一条消息对应的索引条目序号,索引序号值是 3 , 也就是消息 A 。

5 写到最后

Databases are specializing – the “one size fits all” approach no longer applies ------ MongoDB设计哲学

RocketMQ 存储模型设计得非常精巧,笔者觉得每种设计都有其底层思考,这里总结了三点 :

  1. 完美适配消息队列发布订阅模型 ;
  2. 数据文件,消费文件,索引文件各司其职 ,同时以数据文件为核心,异步构建消费文件 + 索引文件这种模式非常容易扩展到主从复制的架构;
  3. 充分考虑业务的查询场景,支持消息 key ,消息 offsetMsgId 查询消息数据。也支持消费者通过 tag 来订阅主题下的不同消息,提升了消费者的灵活性。

 

点击关注,第一时间了解华为云新鲜技术~

与一文详解RocketMQ的存储模型相似的内容:

一文详解RocketMQ的存储模型

摘要:RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型。 本文分享自华为云社区《终于弄明白了 RocketMQ 的存储模型》,作者:勇哥java实战分享。 RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型 。 1 整体概览 首先温习下 RocketMQ 架构。 整体架构中包含

一文详解RocketMQ-Spring的源码解析与实战

摘要:这篇文章主要介绍 Spring Boot 项目使用 rocketmq-spring SDK 实现消息收发的操作流程,同时笔者会从开发者的角度解读 SDK 的设计逻辑。 本文分享自华为云社区《RocketMQ-Spring : 实战与源码解析一网打尽》,作者:勇哥java实战分享。 Rocket

详解RocketMQ 顺序消费机制

摘要:顺序消息是指对于一个指定的 Topic ,消息严格按照先进先出(FIFO)的原则进行消息发布和消费,即先发布的消息先消费,后发布的消息后消费。 本文分享自华为云社区《RocketMQ 顺序消费机制》,作者: 勇哥java实战分享 。 顺序消息是指对于一个指定的 Topic ,消息严格按照先进先

一文详解分布式 ID

分布式系统中,我们经常需要对数据、消息等进行唯一标识,这个唯一标识就是分布式 ID,那么我们如何设计它呢?本文将详细讲述分布式 ID 及其生成方案。

一文详解自然语言处理两大任务与代码实战:NLU与NLG

> 自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。 > 作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦

[转帖]别让运维太忙,一文详解 Ansible 的自动化运维

https://zhuanlan.zhihu.com/p/270655214 一、Ansible 概述 Ansible 是近年来越来越火的一款开源运维自动化工具,通过Ansible可以实现运维自动化,提高运维工程师的工作效率,减少人为失误。 Ansible 通过本身集成的非常丰富的模块可以实现各种管

[转帖]一文详解 Redis 中 BigKey、HotKey 的发现与处理

https://baijiahao.baidu.com/s?id=1709288518127882966&wfr=spider&for=pc 一 前言 在Redis的使用过程中,我们经常会遇到BigKey(下文将其称为“大key”)及HotKey(下文将其称为“热key”)。大Key与热Key如果未

一文详解数仓GaussDB(DWS) 函数出参带出方式

摘要:本文主要讲解DWS函数出参带出方式。 本文分享自华为云社区《GaussDB(DWS)功能 -- 函数出参 #【玩转PB级数仓GaussDB(DWS)】》,作者:譡里个檔 。 DWS的PL/pgSQL函数/存储过程中有一个特殊的语法PERFORM语法,用于执行语句但是丢弃执行结果的场景,常用于一

一文详解 Netty 组件

Netty 是一款优秀的高性能网络框架,内部通过 NIO 的方式来处理网络请求,在高负载下也能可靠和高效地处理 I/O 操作。下面这篇文章将主要对 Netty 中的各个组件进行分析,并在介绍完了各个组件之后,通过 JSF 这个 RPC 框架为例来分析 Netty 的使用。

一文详解GaussDB(DWS) 的并发管控和内存管控

摘要:DWS的负载管理分为两层,第一层为cn的全局并发控制,第二层为资源池级别的并发控制。 本文分享自华为云社区《GaussDB(DWS) 并发管控&内存管控》,作者: fighttingman。 1背景 这里将并发管控和内存管控写在一起,是因为内存管控实际是通过限制语句的并发达到内存管控的目的的。