理论+实战,详解Sharding Sphere-jdbc

理论,实战,详解,sharding,sphere,jdbc · 浏览次数 : 208

小编点评

**分库分表算法** 1.分片键中包含主键值,则直接通过主键解析出路由分片; 2.分片键中不存在主键值 ,则按照其他分片字段值解析出路由分片。 **平滑扩容** *全量同步:以保证历史数据完整性; *实时双向同步:以保证数据一致性; **关键算法** *基因法 & 自定义复合分片算法:实现分布式主键直接路由到对应分片。 *全量同步和实时双向同步:确保数据一致性。 *数据合并:以保证数据完整性。 *按新表合并:以提高插入效率。 **平滑扩容的关键** *全量同步和实时双向同步:确保数据一致性。 *数据合并:以保证数据完整性。 *按新表合并:以提高插入效率。

正文

摘要:Apache ShardingSphere 是一款分布式的数据库生态系统,它包含两大产品:ShardingSphere-Proxy和ShardingSphere-JDBC。

本文分享自华为云社区《看完这一篇,ShardingSphere-jdbc 实战再也不怕了》,作者:勇哥java实战分享 。

1 ShardingSphere 生态

Apache ShardingSphere 是一款分布式的数据库生态系统,它包含两大产品:

  • ShardingSphere-Proxy
  • ShardingSphere-JDBC

▍一、ShardingSphere-Proxy

ShardingSphere-Proxy 被定位为透明化的数据库代理端,提供封装了数据库二进制协议的服务端版本,用于完成对异构语言的支持。

代理层介于应用程序与数据库间,每次请求都需要做一次转发,请求会存在额外的时延。

这种方式对于应用非常友好,应用基本零改动,和语言无关,可以通过连接共享减少连接数消耗。

▍二、ShardingSphere-JDBC

ShardingSphere-JDBC 是 ShardingSphere 的第一个产品,也是 ShardingSphere 的前身, 我们经常简称之为:sharding-jdbc 。

它定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。

当我们在 Proxy 和 JDBC 两种模式选择时,可以参考下表对照:

越来越多的公司都在生产环境使用了 sharding-jdbc ,最核心的原因就是:简单(原理简单,易于实现,方便运维)。

2 基本原理

在后端开发中,JDBC 编程是最基本的操作。不管 ORM 框架是 Mybatis 还是 Hibernate ,亦或是 spring-jpa ,他们的底层实现是 JDBC 的模型。

sharding-jdbc 的本质上就是实现 JDBC 的核心接口。

虽然我们理解了 sharding-jdbc 的本质,但是真正实现起来还有非常多的细节,下图展示了 Prxoy 和 JDBC 两种模式的核心流程。

1.SQL 解析

分为词法解析和语法解析。 先通过词法解析器将 SQL 拆分为一个个不可再分的单词。再使用语法解析器对 SQL 进行理解,并最终提炼出解析上下文。

解析上下文包括表、选择项、排序项、分组项、聚合函数、分页信息、查询条件以及可能需要修改的占位符的标记。

2.执行器优化

合并和优化分片条件,如 OR 等。

3.SQL 路由

根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。

4.SQL 改写

将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。

5.SQL 执行

通过多线程执行器异步执行。

6.结果归并

将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰者模式的追加归并这几种方式。

本文的重点在于实战层面, sharding-jdbc 的实现原理细节我们会在后续的文章一一给大家呈现 。

3 实战案例

笔者曾经为武汉一家 O2O 公司订单服务做过分库分表架构设计 ,当企业用户创建一条采购订单 , 会生成如下记录:

  • 订单基础表t_ent_order :单条记录
  • 订单详情表t_ent_order_detail :单条记录
  • 订单明细表t_ent_order_item:N 条记录

订单数据采用了如下的分库分表策略:

  • 订单基础表按照 ent_id (企业用户编号) 分库 ,订单详情表保持一致;
  • 订单明细表按照 ent_id (企业用户编号) 分库,同时也要按照 ent_id (企业编号) 分表。

首先创建 4 个库,分别是:ds_0、ds_1、ds_2、ds_3 。

这四个分库,每个分库都包含 订单基础表 , 订单详情表 ,订单明细表 。但是因为明细表需要分表,所以包含多张表。

然后 springboot 项目中配置依赖 :

 <dependency>
 <groupId>org.apache.shardingsphere</groupId>
 <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
 <version>4.1.1</version>
 </dependency>

配置文件中配置如下:

  • 配置数据源,上面配置数据源是: ds0、ds1、ds2、ds3 ;
  • 配置打印日志,也就是:sql.show ,在测试环境建议打开 ,便于调试;
  • 配置哪些表需要分库分表 ,在 shardingsphere.datasource.sharding.tables 节点下面配置:

上图中我们看到配置分片规则包含如下两点:

1)真实节点

对于我们的应用来讲,我们查询的逻辑表是:t_ent_order_item 。

它们在数据库中的真实形态是:t_ent_order_item_0 到 t_ent_order_item_7。

真实数据节点是指数据分片的最小单元,由数据源名称和数据表组成。

订单明细表的真实节点是:ds$->{0..3}.t_ent_order_item_$->{0..7} 。

2)分库分表算法

配置分库策略和分表策略 , 每种策略都需要配置分片字段( sharding-columns )和分片算法

4 基因法 & 自定义复合分片算法

分片算法和阿里开源的数据库中间件 cobar 路由算法非常类似的。

假设现在需要将订单表平均拆分到4个分库 shard0 ,shard1 ,shard2 ,shard3 。

首先将 [0-1023] 平均分为4个区段:[0-255],[256-511],[512-767],[768-1023],然后对字符串(或子串,由用户自定义)做 hash, hash 结果对 1024 取模,最终得出的结果 slot 落入哪个区段,便路由到哪个分库。

看起来分片算法很简单,但我们需要按照订单 ID 查询订单信息时依然需要路由四个分片,效率不高,那么如何优化呢 ?

答案是:基因法 & 自定义复合分片算法。

基因法是指在订单 ID 中携带企业用户编号信息,我们可以在创建订单 order_id 时使用雪花算法,然后将 slot 的值保存在 10位工作机器 ID 里。

通过订单 order_id 可以反查出 slot , 就可以定位该用户的订单数据存储在哪个分片里。

 Integer getWorkerId(Long orderId) {
  Long workerId = (orderId >> 12) & 0x03ff;
 return workerId.intValue();
 }

下图展示了订单 ID 使用雪花算法的生成过程,生成的编号会携带企业用户 ID 信息。

解决了分布式 ID 问题,接下来的一个问题:sharding-jdbc 可否支持按照订单 ID ,企业用户 ID 两个字段来决定分片路由吗?

答案是:自定义复合分片算法。我们只需要实现 ComplexKeysShardingAlgorithm 类即可。

复合分片的算法流程非常简单:

1.分片键中有主键值,则直接通过主键解析出路由分片;

2.分片键中不存在主键值 ,则按照其他分片字段值解析出路由分片。

5 扩容方案

既然做了分库分表,如何实现平滑扩容也是一个非常有趣的话题。

在数据同步之前,需要梳理迁移范围。

1)业务唯一主键;

在进行数据同步前,需要先梳理所有表的唯一业务 ID,只有确定了唯一业务 ID 才能实现数据的同步操作。

需要注意的是:业务中是否有使用数据库自增 ID 做为业务 ID 使用的,如果有需要业务先进行改造 。另外确保每个表是否都有唯一索引,一旦表中没有唯一索引,就会在数据同步过程中造成数据重复的风险,所以我们先将没有唯一索引的表根据业务场景增加唯一索引(有可能是联合唯一索引)。

2)迁移哪些表,迁移后的分库分表规则;

分表规则不同决定着 rehash 和数据校验的不同。需逐个表梳理是用户ID纬度分表还是非用户ID纬度分表、是否只分库不分表、是否不分库不分表等等。

接下来,进入数据同步环节。

整体方案见下图,数据同步基于 binlog ,独立的中间服务做同步,对业务代码无侵入。

首先需要做历史数据全量同步:也就是将旧库迁移到新库。

单独一个服务,使用游标的方式从旧库分片 select 语句,经过 rehash 后批量插入 (batch insert)到新库,需要配置jdbc 连接串参数 rewriteBatchedStatements=true 才能使批处理操作生效。

因为历史数据也会存在不断的更新,如果先开启历史数据全量同步,则刚同步完成的数据有可能不是最新的。

所以我们会先开启增量数据单向同步(从旧库到新库),此时只是开启积压 kafka 消息并不会真正消费;然后在开始历史数据全量同步,当历史全量数据同步完成后,在开启消费 kafka 消息进行增量数据同步(提高全量同步效率减少积压也是关键的一环),这样来保证迁移数据过程中的数据一致。

增量数据同步考虑到灰度切流稳定性、容灾 和可回滚能力 ,采用实时双向同步方案,切流过程中一旦新库出现稳定性问题或者新库出现数据一致问题,可快速回滚切回旧库,保证数据库的稳定和数据可靠。

增量数据实时同步的大体思路 :

1.过滤循环消息

需要过滤掉循环同步的 binlog 消息 ;

2.数据合并

同一条记录的多条操作只保留最后一条。为了提高性能,数据同步组件接到 kafka 消息后不会立刻进行数据流转,而是先存到本地阻塞队列,然后由本地定时任务每X秒将本地队列中的N条数据进行数据流转操作。此时N条数据有可能是对同一张表同一条记录的操作,所以此处只需要保留最后一条(类似于 redis aof 重写);

3.update 转 insert

数据合并时,如果数据中有 insert + update 只保留最后一条 update ,会执行失败,所以此处需要将 update 转为 insert 语句 ;

4.按新表合并

将最终要提交的 N 条数据,按照新表进行拆分合并,这样可以直接按照新表纬度进行数据库批量操作,提高插入效率。

扩容方案文字来自 《256变4096:分库分表扩容如何实现平滑数据迁移》,笔者做了些许调整。

6 总结

sharding-jdbc 的本质是实现 JDBC 的核心接口,架构相对简单。

实战过程中,需要配置数据源信息,逻辑表对应的真实节点和分库分表策略(分片字段和分片算法

实现分布式主键直接路由到对应分片,则需要使用基因法 & 自定义复合分片算法 。

平滑扩容的核心是全量同步实时双向同步,工程上有不少细节。

实战代码地址:https://github.com/makemyownlife/shardingsphere-jdbc-demo

参考资料:

  • 256变4096:分库分表扩容如何实现平滑数据迁移?
  • 黄东旭:分布式数据库历史、发展趋势与 TiDB 架构

 

点击关注,第一时间了解华为云新鲜技术~

与理论+实战,详解Sharding Sphere-jdbc相似的内容:

理论+实战,详解Sharding Sphere-jdbc

摘要:Apache ShardingSphere 是一款分布式的数据库生态系统,它包含两大产品:ShardingSphere-Proxy和ShardingSphere-JDBC。 本文分享自华为云社区《看完这一篇,ShardingSphere-jdbc 实战再也不怕了》,作者:勇哥java实战分享

CutMix&Mixup详解与代码实战

摘要:本文将通过实践案例带大家掌握CutMix&Mixup。 本文分享自华为云社区《CutMix&Mixup详解与代码实战》,作者:李长安。 引言 最近在回顾之前学到的知识,看到了数据增强部分,对于CutMix以及Mixup这两种数据增强方式发现理解不是很到位,所以这里写了一个项目再去好好看这两种数

一文详解扩散模型:DDPM

我们要介绍的扩散模型的理论基础和非常重要的DDPM,扩散模型的实现并不复杂,但其背后的数学原理却非常丰富。在这里我会介绍这些重要的数学原理,省去了这些公式的推导计算,如果你对这些推导感兴趣,可以学习参

一文详解自然语言处理两大任务与代码实战:NLU与NLG

> 自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。 > 作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦

Go方法特性详解:简单性和高效性的充分体现

本文深入探讨了Go语言中方法的各个方面,包括基础概念、定义与声明、特性、实战应用以及性能考量。文章充满技术深度,通过实例和代码演示,力图帮助读者全面理解Go方法的设计哲学和最佳实践。 关注【TechLeadCloud】,分享互联网架构、云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品

理论+实践,带你了解分布式训练

详细介绍分布式机器学习系统的基础概念、分布式训练集群架构、分布式训练并行策略,并以DeepSpeed 为例介绍如何在集群上训练大语言模型。

Kubernetes 数据存储:从理论到实践的全面指南

本文深入解析 Kubernetes (K8S) 数据存储机制,探讨其架构、管理策略及最佳实践。文章详细介绍了 K8S 数据存储的基础、架构组成、存储卷管理技巧,并通过具体案例阐述如何高效、安全地管理数据存储,同时展望了未来技术趋势。 关注【TechLeadCloud】,分享互联网架构、云服务技术的全

使用键盘控制gazebo小车模型运动

博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建详见另一篇博客 博客地址:gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 ROS源码安装teleop_

基于SLAM系统建图仿真,完成定位仿真

博客地址:https://www.cnblogs.com/zylyehuo/ 基于SLAM系统完成建图仿真,详见之前的博客 基于Gazebo搭建移动机器人,并结合SLAM系统完成建图仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 Par

移动机器人运动规划及运动仿真

博客地址:https://www.cnblogs.com/zylyehuo/ 基于[基于SLAM系统建图仿真,完成定位仿真],详见之前的博客 基于SLAM系统建图仿真,完成定位仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 环境配置 u