摘要:本文深度讲解了卷积计算的原理,并详细介绍了构成所有卷积网络主干的基本元素,包括卷积层本身、填充和步幅的基本细节、用于在相邻区域汇聚信息的汇聚层,最后给出卷积层和汇聚层的代码示例和CNN框架结构图。
本文分享自华为云社区《神经网络基础部件-卷积层详解》,作者: 嵌入式视觉 。
在全连接层构成的多层感知机网络中,我们要通过将图像数据展平成一维向量来送入模型,但这会忽略了每个图像的空间结构信息。理想的策略应该是要利用相近像素之间的相互关联性,将图像数据二维矩阵送给模型中学习。
卷积神经网络(convolutional neural network,CNN)正是一类强大的、专为处理图像数据(多维矩阵)而设计的神经网络,CNN 的设计是深度学习中的一个里程碑式的技术。在 Transformer 应用到 CV 领域之前,基于卷积神经网络架构的模型在计算机视觉领域中占主导地位,几乎所有的图像识别、目标检测、语义分割、3D目标检测、视频理解等任务都是以 CNN 方法为基础。
卷积神经网络核心网络层是卷积层,其使用了卷积(convolution)这种数学运算,卷积是一种特殊的线性运算。另外,通常来说,卷积神经网络中用到的卷积运算和其他领域(例如工程领域以及纯数学领域)中的定义并不完全一致。
在理解卷积层之前,我们首先得理解什么是卷积操作。
卷积与傅里叶变换有着密切的关系。例如两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,利用此一性质,能简化傅里叶分析中的许多问题。
operation 视语境有时译作“操作”,有时译作“运算”,本文不做区分。
为了给出卷积的定义, 这里从现实世界会用到函数的例子出发。
假设我们正在用激光传感器追踪一艘宇宙飞船的位置。我们的激光传感器给出 一个单独的输出 x(t)x(t),表示宇宙飞船在时刻 tt 的位置。xx 和 tt 都是实值的,这意味着我们可以在任意时刻从传感器中读出飞船的位置。
现在假设我们的传感器受到一定程度的噪声干扰。为了得到飞船位置的低噪声估计,我们对得到的测量结果进行平均。显然,时间上越近的测量结果越相关,所 以我们采用一种加权平均的方法,对于最近的测量结果赋予更高的权重。我们可以采用一个加权函数 w(a)w(a) 来实现,其中 aa 表示测量结果距当前时刻的时间间隔。如果我们对任意时刻都采用这种加权平均的操作,就得到了一个新的对于飞船位置的平滑估计函数 s :
这种运算就叫做卷积(convolution)。更一般的,卷积运算的数学公式定义如下:
以上卷积计算公式可以这样理解:
对卷积这个名词,可以这样理解:所谓两个函数的卷积(f∗g),本质上就是先将一个函数翻转,然后进行滑动叠加。在连续情况下,叠加指的是对两个函数的乘积求积分,在离散情况下就是加权求和,为简单起见就统一称为叠加。
因此,卷积运算整体来看就是这么一个过程:
翻转—>滑动—>叠加—>滑动—>叠加—>滑动—>叠加…
多次滑动得到的一系列叠加值,构成了卷积函数。
这里多次滑动过程对应的是 t 的变化过程。
那么,卷积的意义是什么呢?可以从卷积的典型应用场景-图像处理来理解:
一维卷积的实例有 “丢骰子” 等经典实例,这里不做展开描述,本文从二维卷积用于图像处理的实例来理解。
一般,数字图像可以表示为如下所示矩阵:
而卷积核 g 也可以用一个矩阵来表示,如:
按照卷积公式的定义,则目标图片的第(u,v) 个像素的二维卷积值为:
展开来分析二维卷积计算过程就是,首先得到原始图像矩阵中 (u,v) 处的矩阵:
然后将图像处理矩阵翻转(两种方法,结果等效),如先沿 x 轴翻转,再沿 y 轴翻转(相当于将矩阵 g 旋转 180 度):
最后,计算卷积时,就可以用 f 和 g′ 的内积:
计算过程可视化如下动图所示,注意动图给出的是 gg 不是 g′g′。
以上公式有一个特点,做乘法的两个对应变量 a,b 的下标之和都是 (u,v),其目的是对这种加权求和进行一种约束,这也是要将矩阵 g 进行翻转的原因。上述计算比较麻烦,实际计算的时候,都是用翻转以后的矩阵,直接求矩阵内积就可以了。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征) 上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。一幅图像在经过卷积操作后得到结果称为特征映射(Feature Map)。如果把图像矩阵简写为 II,把卷积核 Kernal 简写为 KK,则目标图片的第 (i,j) 个像素的卷积值为:
可以看出,这和一维情况下的卷积公式 2 是一致的。因为卷积的可交换性,我们也可以把公式 3 等价地写作:
通常,下面的公式在机器学习库中实现更为简单,因为 m 和 n 的有效取值范围相对较小。
卷积运算可交换性的出现是因为我们将核相对输入进行了翻转(flip),从 m 增 大的角度来看,输入的索引在增大,但是卷积核的索引在减小。我们将卷积核翻转的唯一目 的是实现可交换性。尽管可交换性在证明时很有用,但在神经网络的应用中却不是一个重要的性质。相反,许多神经网络库会实现一个互相关函数(corresponding function),它与卷积相同但没有翻转核:
互相关函数的运算,是两个序列滑动相乘,两个序列都不翻转。卷积运算也是滑动相乘,但是其中一个序列需要先翻转,再相乘。
互相关和卷积运算的关系,可以通过下述公式理解:
其中⊗ 表示互相关运算,∗ 表示卷积运算, rot180(⋅) 表示旋转 180 度,Y 为输出矩阵。从上式可以看出,互相关和卷积的区别仅仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积.
离散卷积可以看作矩阵的乘法,然而,这个矩阵的一些元素被限制为必须和另外一些元素相等。
在神经网络中使用卷积是为了进行特征抽取,卷积核是否进行翻转和其特征抽取的能力无关(特别是当卷积核是可学习的参数时),因此卷积和互相关在能力上是等价的。事实上,很多深度学习工具中卷积操作其实都是互相关操作,用来减少一些不必要的操作或开销(不反转 Kernal)。
总的来说,
在传统图像处理中,线性空间滤波的原理实质上是指指图像 ff 与滤波器核 ww 进行乘积之和(卷积)运算。核是一个矩阵,其大小定义了运算的邻域,其系数决定了该滤波器(也称模板、窗口滤波器)的性质,并通过设计不同核系数(卷积核)来实现低通滤波(平滑)和高通滤波(锐化)功能,因此我们可以认为卷积是利用某些设计好的参数组合(卷积核)去提取图像空域上相邻的信息。
在全连接前馈神经网络中,如果第 l 层有 Ml 个神经元,第 l−1 层有 Ml−1 个 神经元,连接边有 Ml×Ml−1 个,也就是权重矩阵有Ml×Ml−1 个参数。当 Ml 和 Ml−1 都很大时,权重矩阵的参数就会非常多,训练的效率也会非常低。
如果采用卷积来代替全连接,第 l 层的净输入 z(l) 为第 l−1 层激活值 a(l−1)和滤波器w(l)∈RK 的卷积,即
其中 b(l)∈R 为可学习的偏置。
上述卷积层公式也可以写成这样的形式: Z=W∗A+b
根据卷积层的定义,卷积层有两个很重要的性质:
局部连接:在卷积层(假设是第 ll 层)中的每一个神经元都只和下一层(第 l−1l−1 层)中某个局部窗口内的神经元相连,构成一个局部连接网络。其实可能表达为稀疏交互更直观点,传统的网络层是全连接的,使用矩阵乘法来建立输入与输出的连接关系。矩阵的每个参数都是独立的,它描述了每个输入单元与输出单元的交互。这意味着每个输出单元与所有的输入单元都产生关联。而卷积层通过使用卷积核矩阵来实现稀疏交互(也称作稀疏连接,或者稀疏权重),每个输出单元仅仅与特定的输入神经元(其实是指定通道的 feature map)产生关联。
下图显示了全连接层和卷积层的每个输入单元影响的输出单元比较:
权重共享:卷积层中,同一个核会在输入的不同区域做卷积运算。全连接层和卷积层的权重参数比较如下图:
全连接层和卷积层的可视化对比如下图所示:
总结:一个滤波器(3维卷积核)只捕捉输入数据中的一种特定的局部特征。为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,即增加滤波器的数量,以更好地提取图像的特征。
前面章节内容中,卷积的输出形状只取决于输入形状和卷积核的形状。而神经网络中的卷积层,在卷积的标准定义基础上,还引入了卷积核的滑动步长和零填充来增加卷积的多样性,从而可以更灵活地进行特征抽取。
卷积层定义:每个卷积核(Kernel)在输入矩阵上滑动,并通过下述过程实现卷积计算:
卷积层数值计算过程可视化如下图 1 所示:
图片来源论文 Improvement of Damage Segmentation Based on Pixel-Level Data Balance Using VGG-Unet。
注意,卷积层的输出 Feature map 的大小取决于输入的大小、Pad 数、卷积核大小和步长。在 Pytorch 框架中,图片(feature map)经卷积 Conv2D 后输出大小计算公式如下:
其中 ⌊⌋⌊⌋ 是向下取整符号,用于结果不是整数时进行向下取整(Pytorch 的 Conv2d 卷积函数的默认参数 ceil_mode = False,即默认向下取整, dilation = 1),其他符号解释如下:
上图1侧重于解释数值计算过程,而下图2则侧重于解释卷积层的五个核心概念的关系:
上图是三通道经过两组过滤器的卷积过程,在这个例子中,输入是三维数据 3×32×323×32×32,经过权重参数尺寸为 2×3×5×52×3×5×5 的卷积层后,输出为三维 2×28×282×28×28,维数并没有变化,只是每一维内部的尺寸有了变化,一般都是要向更小的尺寸变化,以便于简化计算。
假设三维卷积(也叫滤波器)尺寸为 (cin,k,k)(cin,k,k),一共有 coutcout 个滤波器,即卷积层参数尺寸为 (cout,cin,k,k)(cout,cin,k,k) ,则标准卷积层有以下特点:
注意,以上内容都描述的是标准卷积,随着技术的发展,后续陆续提出了分组卷积、深度可分离卷积、空洞卷积等。详情可参考我之前的文章-MobileNetv1论文详解。
Pytorch 框架中对应的卷积层 api 如下:
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
主要参数解释:
示例代码:
###### Pytorch卷积层输出大小验证 import torch import torch.nn as nn import torch.autograd as autograd # With square kernels and equal stride # output_shape: height = (50-3)/2+1 = 24.5,卷积向下取整,所以 height=24. m = nn.Conv2d(16, 33, 3, stride=2) # # non-square kernels and unequal stride and with padding # m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) # 输出shape: torch.Size([20, 33, 28, 100]) # # non-square kernels and unequal stride and with padding and dilation # m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) # 输出shape: torch.Size([20, 33, 26, 100]) input = autograd.Variable(torch.randn(20, 16, 50, 100)) output = m(input) print(output.shape) # 输出shape: torch.Size([20, 16, 24, 49])
卷积神经网络一般由卷积层、汇聚层和全连接层构成。
通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用不仅是进降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。
与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。
在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上⻆开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。
值得注意的是,与卷积层一样,汇聚层也可以通过改变填充和步幅以获得所需的输出形状。
Pytorch 框架中对应的聚合层 api 如下:
class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
主要参数解释:
Pytorch 中池化层默认ceil mode = false,而 Caffe 只实现了 ceil mode= true 的计算方式。
示例代码:
import torch import torch.nn as nn import torch.autograd as autograd # 大小为3,步幅为2的正方形窗口池 m = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # pool of non-square window input = autograd.Variable(torch.randn(20, 16, 50, 32)) output = m(input) print(output.shape) # torch.Size([20, 16, 25, 16])
一个典型的卷积网络结构是由卷积层、汇聚层、全连接层交叉堆叠而成。如下图所示:
一个简单的 CNN 网络连接图如下所示。
经典 CNN 网络的总结,可参考我之前写的文章-经典 backbone 网络总结。
目前,卷积网络的整体结构趋向于使用更小的卷积核(比如 1×11×1 和 3×33×3) 以及更深的结构(比如层数大于 50)。另外,由于卷积层的操作性越来越灵活(同样可完成减少特征图分辨率),汇聚层的作用越来越小,因此目前的卷积神经网络逐渐趋向于全卷积网络。
另外,可通过这个网站可视化 cnn 的全部过程。