python进阶:带你学习实时目标跟踪

python,进阶,学习,实时,目标,跟踪 · 浏览次数 : 223

小编点评

#归纳总结以上内容,生成内容时需要带简单的排版 **1.排版结构** *使用列表存放视频流的轮廓,方便查找* *使用列表存放物体框的坐标,方便绘制* *使用列表存放过滤的物体的矩阵坐标,方便绘出* **2.排版方法** *将视频流轮廓存储到列表中,方便查找* *将物体框的坐标存储到列表中,方便绘制* *将过滤的物体的矩阵坐标存储到列表中,方便绘出* **3.排版技巧** *使用列表存储,方便查找,提高效率* *使用列表存储,方便绘制,提高效率* *使用列表存储,方便绘出,提高效率* **4.示例代码** ```python #视频流轮廓 contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #物体框坐标 frame1 = cap.read() #过滤物体的矩阵坐标 mask = filter_img(diff) #绘制物体 for contour in contours: (x,y,w,h) = cv2.boundingRect(contour) cv2.rectangle(frame1,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=1) ``` **5.总结** 排版结构可以根据具体情况进行调整,例如可以根据视频流的轮廓进行优化等。 排版方法可以根据具体情况进行调整,例如可以根据物体框的坐标进行优化等。 排版技巧可以根据具体情况进行调整,例如可以根据视频流的轮廓进行优化等。

正文

摘要:本程序主要实现了python的opencv人工智能视觉模块的目标跟踪功能。

本文分享自华为云社区《python进阶——人工智能实时目标跟踪,这一篇就够用了!》,作者:lqj_本人 。

前言

本程序主要实现了python的opencv人工智能视觉模块的目标跟踪功能。

项目介绍

区域性锁定目标实时动态跟踪(适用 警方追捕,无人机锁定拍摄等)

首先先介绍几种AI视觉算法

特性:

1.BOOSTING:算法原理类似于Harr cascdes(AdaBoost),是一种很老的算法。这个算法速度慢并且不准。

2.MIL:比BOOSTING准一点

3.KCF:速度比BOOSTING和MIL更快,与BOOSTING和MIL一样不能很好的处理遮挡问题。

4.CSRT:比KCF更准一些,但是速度比KCF慢

5.MedianFlow:对于快速移动的目标和外形比那花迅速的目标效果不好

6.TLD:会产生朵的false-posittives

7.MOSSE:算法速度非常快,但是准确率比不上KCF和CSRT,在一些追求算法的速度场合很适用

8.GOTURN:OpenCV中自带的唯一一个基于深度学习的算法,运行短发需要提前下载好模型文件

分别对应的伴生的函数:

kcf:cv2.legacy.TrackerKCF_create
csrt:cv2.legacy.TrackerCSRT_create
boosting:cv2.legacy.TrackerBoosting_create
mil:cv2.legacy.TrackerMIL_create
tld:cv2.legacy.TrackerTLD_create
medianflow:cv2.legacy.TrackerMedianFlow_create
mosse:cv2.legacy.TrackerMOSSE_create

详细代码讲解

导入cv模块

ret,frame = cap.read()
import cv2

使用csrt算法,引用伴生函数,并赋值给tracker

tracker = cv2.legacy.TrackerCSRT_create()

读取视频流

cap = cv2.VideoCapture('11.mp4')

先读取到第一帧

ret,frame = cap.read()

使用selectROI(前景),画框将目标框起,并赋值给bbox

bbox = cv2.selectROI('A',frame,fromCenter=False,showCrosshair=True)

初始化tracker,将上面的两个值传入

tracker.init(frame,bbox)

读取每一帧

ret,frame = cap.read()

根据每一帧来更新tracker

ok,box = tracker.update(frame)

若读取成功,就定位画框,并跟随

if ok :
        (x,y,w,h) = [int(v) for v in box]
        cv2.rectangle(frame,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=2)

显示视频流

cv2.imshow('A', frame)

等待50毫秒或按空格键退出

if cv2.waitKey(50) == ord(' '):
    break

释放视频流和释放窗口

cap.release()
cv2.destroyAllWindows()

完整代码及注释:

import cv2
tracker = cv2.legacy.TrackerCSRT_create()#使用csrt算法,引用伴生函数,并赋值给tracker

cap = cv2.VideoCapture('11.mp4')#读取视频流

ret,frame = cap.read()#先读取第一帧

bbox = cv2.selectROI('A',frame,fromCenter=False,showCrosshair=True)#使用selectROI(前景),画框将目标框起,并赋值给bbox

tracker.init(frame,bbox)#初始化tracker,将上面的两个值传入

while True:
    ret,frame = cap.read()#读取每一帧

    ok,box = tracker.update(frame)#根据每一帧来跟新tracker

    # 若读取成功,我们就定位画框,并跟随
    if ok :
        (x,y,w,h) = [int(v) for v in box]
        cv2.rectangle(frame,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=2)

    cv2.imshow('A', frame)#显示视频流

    if cv2.waitKey(50) == ord(' '):#等待50毫秒或键盘按空格键退出
        break

# 释放视频流,释放窗口
cap.release()
cv2.destroyAllWindows()

结果演示

动图封面
 

区域性全部实时动态目标跟踪(适用夜视跟踪,范围性观察等)

思路构建

1.先将实时摄像流或录制视频流,灰度转化并高斯模糊

2.用二值化算法将流中的物体轮廓扩充

3.分别先读到第一帧和第二帧,让其对比

4.寻找对比后,流的轮廓位置,并开启简易模式

5.过滤物体的矩阵轮廓将其定位绘出

详细代码讲解

导入cv模块

import cv2

将视频流转换并让其高斯模糊

gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)

二值化扩充

_,thresh = cv2.threshold(blur,20,255,cv2.THRESH_BINARY)
dilated = cv2.dilate(thresh,None,iterations=3)
return dilated

读取视频流或实时摄像流

cap = cv2.VideoCapture('11.mp4')

读取第一帧

ret,frame1 = cap.read()

读取第二帧

ret,frame2 = cap.read()

判断cap是否为打开状态

while cap.isOpened():

若为打开,则第一帧与第二帧比较

diff = cv2.absdiff(frame1,frame2)
mask = filter_img(diff)

寻找比较后的物体轮廓,并开启简易模式

contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

使用方框将视频流中的物体框出,得到矩阵的宽高

(x,y,w,h) = cv2.boundingRect(contour)

若矩阵的面积小于10(根据视频流中物体的大小来定义),直接无视

if cv2.contourArea(contour) < 10:

将过滤的物体的矩阵轮廓绘出(一定要用int整形)

cv2.rectangle(frame1,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=1)

将第一帧显示

cv2.imshow('A',frame1)

将上面赋值的mask显示

cv2.imshow('B',mask)

实现前后帧对比,并定位物体运动轨迹

1.将第二帧赋值给第一帧

frame1 = frame2

2.再将cap读到的赋值给第二帧()

ret,frame2 = cap.read()

等待50毫秒或者按空格结束

if cv2.waitKey(50) == ord(' '):
    break

释放视频流及释放窗口

cap.release()
cv2.destroyAllWindows()

完整代码及注释:

import cv2
def filter_img(frame):
    #将视频流转换灰度并让其高斯模糊
    gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray,(5,5),0)
    #二值化将其扩充
    _,thresh = cv2.threshold(blur,20,255,cv2.THRESH_BINARY)
    dilated = cv2.dilate(thresh,None,iterations=3)
    return dilated
# 读取视频流
cap = cv2.VideoCapture('11.mp4')

ret,frame1 = cap.read()#读到第一帧
ret,frame2 = cap.read()#读到第二帧

while cap.isOpened():#判断cap是否打开
    diff = cv2.absdiff(frame1,frame2)#若打开,则第一帧和第二帧作比较

    mask = filter_img(diff)

    contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)#寻找视频流的轮廓,简单模式

    #用方框将视频流中的物体用矩形框出
    for contour in contours:
        (x,y,w,h) = cv2.boundingRect(contour)#得到矩阵的宽高
        if cv2.contourArea(contour) < 10:#若矩阵的面积小于200,就无视(太小了)
            continue
        cv2.rectangle(frame1,pt1=(int(x),int(y)),pt2=(int(x)+int(w),int(y)+int(h)),color=(0,255,0),thickness=1)#将过滤的物体的矩阵轮廓绘出

    # cv2.drawContours(frame1,contours,-1,(0,255,0),2)#将视频流中的物体轮廓画出

    cv2.imshow('A',frame1)#将第一帧显示
    cv2.imshow('B',mask)#将mask也显示

    frame1 = frame2#将第二帧赋值给第一帧
    ret,frame2 = cap.read()#再将cap读到的赋值给第二帧

    if cv2.waitKey(50) == ord(' '):#等待五十毫秒或者按空格结束
        break
#销毁cap流
cap.release()
#释放窗口
cv2.destroyAllWindows()

结果显示

动图封面
 

点击关注,第一时间了解华为云新鲜技术~

与python进阶:带你学习实时目标跟踪相似的内容:

python进阶:带你学习实时目标跟踪

摘要:本程序主要实现了python的opencv人工智能视觉模块的目标跟踪功能。 本文分享自华为云社区《python进阶——人工智能实时目标跟踪,这一篇就够用了!》,作者:lqj_本人 。 前言 本程序主要实现了python的opencv人工智能视觉模块的目标跟踪功能。 项目介绍 区域性锁定目标实时

一文带你搞清楚Python的多线程和多进程

本文分享自华为云社区《Python中的多线程与多进程编程大全【python指南】》,作者:柠檬味拥抱。 Python作为一种高级编程语言,提供了多种并发编程的方式,其中多线程与多进程是最常见的两种方式之一。在本文中,我们将探讨Python中多线程与多进程的概念、区别以及如何使用线程池与进程池来提高并

带你掌握利用Terraform不同数据源扩展应用场景

除了Terraform直接通过调用http provider接口获取数据外,还可以使用执行本地Shell/Python脚本,脚本内部实现调用外部接口获取数据,再将数据进行传入到Terraform进行使用。

Python学习之七_input和print

Python学习之七_input和print 摘要 python3 之后 函数必须带 () 了 因为我开始学习的比较晚, 所以准备Python3开始学起 前面主要是模仿别人的代码进行学习 后续慢慢学习 使用python调用ebpf等内容. 这里简单先总结一下input和print的函数. 作为一个学

【Python进阶-PyQt5】00搭建PyQt5环境

1.创建独立开发虚拟环境 1.1虚拟环境简介 我们编写的程序,有时用到的Python库是不一样的,比如说开发桌面应用程序我们主要用到PyQt5相关的Python库、开发Web应用程序我们主要用到Django相关的Python库等等。假设我们在开发桌面应用程序的时候除了PyQt5相关的Python库外

《流畅的Python》 读书笔记 第一章数据模型(1)230926

写在最前面的话 缘由 关于Python的资料市面上非常多,好的其实并不太多。 个人认为,基础的,下面的都还算可以 B站小甲鱼 黑马的视频 刘江的博客 廖雪峰的Python课程 进阶的更少,《流畅的Python》应该算一个。 加上,自己也很久没有耐心的看完一本书了 鉴于以上2点,2023-9-26开始

Python 列表推导式:简洁、高效的数据操作艺术

# Python 列表推导式:简洁、高效的数据操作艺术 Python 的列表推导式,这个看似简单的语法糖,实则内含无限威力。在 Python 代码编写中,列表推导式的灵活性和简洁性让它成为了不可或缺的一部分。在这篇文章中,我们将更全面、更深入地探讨列表推导式,从基础的概念认识,到各类进阶的用法和操作

8.0 Python 使用进程与线程

python 进程与线程是并发编程的两种常见方式。进程是操作系统中的一个基本概念,表示程序在操作系统中的一次执行过程,拥有独立的地址空间、资源、优先级等属性。线程是进程中的一条执行路径,可以看做是轻量级的进程,与同一个进程中的其他线程共享相同的地址空间和资源。

Python:多进程并行编程与进程池

Python的并行编程可以采用multiprocessing或mpi4py模块来完成。multiprocessing是Python标准库中的模块,实现了共享内存机制,也就是说,可以让运行在不同处理器核心的进程能读取共享内存。在基于共享内存通信的多进程编程中,常常通过加锁或类似机制来实现互斥。)

【python技巧】文本文件的读写操作

本文介绍了python进行文件读取的常用库之一——file库,介绍了其中的读、写、指针移动函数,供初学者学习了解。