基于k6和python进行自动化性能测试

基于,k6,python,进行,自动化,性能,测试 · 浏览次数 : 63

小编点评

**k6介绍** k6是一款开源性能测试工具,基于JavaScript可以编写k6的测试脚本,测试网站的性能和响应能力。k6支持各种性能测试,包括请求延迟测试、并发测试、数据库测试和响应时间测试。 **k6的优势** * **易于使用:**k6提供一个易于使用的语法,即使是新手也可以轻松使用。 * **功能丰富:**k6提供各种性能测试功能,可以满足各种性能测试需求。 * **可扩展性:**k6可以扩展到任何需要,可以与其他性能测试工具一起使用。 **k6的使用步骤** 1. **安装k6:**使用npm安装k6:``` npm install k6 ``` 2. **创建测试脚本:**使用编辑器创建测试脚本,例如: ```javascript const k6 = require('k6'); k6('localhost:3000', function (err, results) { if (err) { console.error(err); return; } // 打印测试结果 console.log(results); }); ``` 3. **运行测试脚本:**运行测试脚本: ``` node test.js ``` **示例测试脚本** ```javascript const k6 = require('k6'); k6('localhost:3000', function (err, results) { if (err) { console.error(err); return; } // 打印测试结果 console.log(results); // 测试请求延迟 k6.get('/get-data', function (err, response) { if (err) { console.error(err); return; } // 打印响应延迟 console.log(response.latency); }); }); ``` **总结** k6是一款功能强大的性能测试工具,可以满足各种性能测试需求。其易于使用、功能丰富和可扩展性使其成为性能测试中的理想选择。

正文

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

本文分享自华为云社区《基于k6和python进行自动化性能测试》,作者: 风做了云的梦。

当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

k6是一个开源工具,基于JavaScript可以编写k6的测试脚本,测试Web应用程序以及API的性能,支持HTTP等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6支持Linux、MacOS等多个平台,通过k6官网根据提示即可在各个平台快速安装k6,终端输入k6 version出现如下显示说明安装成功。

以下是一个简单的k6测试脚本,通过k6的HTTP API模拟Get请求,并且休眠一秒钟:K

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {
 http.get('https://test-api.com');
 sleep(1);
}

通过执行下面这行代码,运行脚本,即可对服务完成测试。

k6 run test-script.js

k6提供了丰富的功能,以下是k6常用的一些API,具体可以参考官网文档介绍:

- http.get(url, [options]):发送GET请求。
- http.post(url, body, [options]):发送POST请求。
- check(res, checks):检查响应是否符合预期。
- group(name, func):将一组请求分组并统计性能指标。
- sleep(duration):休眠指定的时间。

k6的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。

- VUs:虚拟用户的数量。
- Iterations:迭代次数。
- RPS:每秒钟的请求数。
- Duration:测试持续时间。
- Data Sent/Received:发送和接收的数据量。
- Checks:检查的数量。
- Status codes:响应状态码的数量。
- Errors:错误的数量。
- Latency distribution:延迟分布。

通过Python和k6你可以更加高效的完成符合自己要求的自动化测试,Python可以提供非常多的工具库,用来收集处理k6返回的结果。 我们可以编写以下k6测试脚本,并且通过Python去执行它,相关注释我已经标注出来,在handleSummary函数中,我们可以通过metrics来获取各种测试信息,具体如代码所示,可以参考官网关于metrics的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。

import http from 'k6/http';
import { check, sleep} from 'k6';
import {Rate} from 'k6/metrics';
export default function() {
    #post请求所需要的body体
 let requestBody = {
 "xxx":[
 "xxxxx"
        ],
 "xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值
    };
    #url
 const url = 'http://example.com';
 const payload = JSON.stringify(requestBody);
 const params = {
    headers: {
 'Content-Type': 'application/json',
        },
    timeout: '100s' #每个请求的超时时间
    };
 let res = http.post(url, payload, params);
    #检测结果是否是200OK
 check(res, { 'status is 200': (r) => r.status === 200 });
}
export function handleSummary(data) {
        #通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量
 const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;
 const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;
 const res = `${time} ${rps}`; 
        console.log(res); # 利用console.log可以将内容打印到控制台
 return {stdout : res}; #输出到标准输出
}

如下是一个Python代码示例,相关代码已经注释,通过Python中的subprocess模块执行k6脚本,并且捕获k6脚本的输出,通过pandas库进行整理输出到excel中。还可以通过argparse库解析命令行参数传入k6脚本中,更加灵活,高效。

# -*- coding: utf-8 -*-
import subprocess
from alive_progress import alive_bar # 非常丰富的进度条工具库
from tqdm import tqdm # 进度条工具库
import pandas as pd # 可以用来处理文本excel,csv等
from collections import OrderedDict
import argparse # 用来解析命令行参数 
import time
print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))
print("************开始测试啦! 祈祷不出错!**************")
# 需要测试的测试语句集合
test_examples = [
 "aaaaaaa",
 "bbbbbbb",
 "ccccccc"
]
dataMap = {'test': test_examples}
parser = argparse.ArgumentParser()
parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间
args = parser.parse_args()
print("每条语句测试时间 : ", args.duration_time)
vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景
cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名
# 循环测试,可以将多个需要测试的语句集合放入到dataMap中
for (name, data) in dataMap.items(): 
 print("当前测试的项目为 :", name)
        res = OrderedDict()
        res['test_examples'] = []
 for n in cols_name:
                res[n] = []
        df = pd.DataFrame(res)
 excel_name = name + ".xlsx"
 df.to_excel(excel_name, index=False)
 for query in data:
 print("当前测试语句为 :", query)
                origin = pd.read_excel(excel_name)
 with alive_bar(len(vus)) as bar:
 temp_dict = {}
 temp_dict['test_examples'] = query
 for vu in vus:
 keyRps = vu + '-rps/s'
 keyTime = vu + '-avg/ms'
 MyVar='MyVar=' + query
 #通过Popen执行k6脚本,并且捕获它的标准输出
                                process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
                                result = process.stdout.read()
                                temp = result.split()
 temp_dict[keyTime] = temp[0].decode();
 temp_dict[keyRps] = temp[1].decode();
 print("并发:", vu, temp[0].decode(), temp[1].decode())
 bar()
 #将脚本输出写到excel
 save_data = origin.append(temp_dict, ignore_index=True)
 save_data.to_excel(excel_name, index=False)

执行此Python脚本,可以得到类似以下输出:

1、k6官网文档链接:https://k6.io/docs/

2、k6安装链接:https://k6.io/docs/get-started/installation/

号外

7月7日,华为开发者大会2023 ( Cloud )将拉开帷幕,并将在国内30多个城市、海外10多个国家开设分会场,诚邀您参加这场不容错过的年度开发者盛会,让我们一起开启探索之旅!

我们将携手开发者、客户、合作伙伴,为您呈现华为云系列产品服务与丰富的创新实践,并与您探讨AI、大数据、数据库、PaaS、aPaaS、媒体服务、云原生、安全、物联网、区块链、开源等技术话题,展开全面深入的交流。

大会将汇聚全球科学家、行业领袖、技术专家、社区大咖,开设200多场开发者专题活动,为全球开发者提供面对面交流与合作的机会,共同探讨技术创新和业务发展。

大会官网:https://developer.huaweicloud.com/HDC.Cloud2023.html

参会购票:https://www.vmall.com/product/10086352254099.html?cid= 211761

点击参与开发者社区活动,观赏技术大咖秀、玩转技术梦工厂,有机会赢取4000元开发者礼包!

欢迎关注“华为云开发者联盟”公众号,获取大会议程、精彩活动和前沿干货。

 

点击关注,第一时间了解华为云新鲜技术~

与基于k6和python进行自动化性能测试相似的内容:

基于k6和python进行自动化性能测试

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。 本文分享自华为云社区《基于k6和python进行自动化性能测试》,作者: 风做了云的梦。 当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些

基于 Three.js 的 3D 模型加载优化

作为一个3D的项目,从用户打开页面到最终模型的渲染加载的时间也会比普通的H5项目要更长一些,从而造成大量的用户流失。为了提升首屏加载的转化率,需要尽可能的降低loading的时间。这里就分享一些我们在模型加载优化方面的心得。

基于MindSpore实现BERT对话情绪识别

本文分享自华为云社区《【昇思25天学习打卡营打卡指南-第二十四天】基于 MindSpore 实现 BERT 对话情绪识别》,作者:JeffDing。 模型简介 BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Trans

基于 Vagrant 手动部署多个 Redis Server

环境准备 宿主机环境:Windows 10 虚拟机环境:Vagrant + VirtualBox Vagrantfile 配置 首先,我们需要编写一个 Vagrantfile 来定义我们的虚拟机配置。假设已经在 D:\Vagrant\redis 目录下创建了一个 Vagrantfile,其内容如下:

基于EF Core存储的Serilog持久化服务

前言 Serilog是 .NET 上的一个原生结构化高性能日志库,这个库能实现一些比内置库更高度的定制。日志持久化是其中一个非常重要的功能,生产环境通常很难挂接调试器或者某些bug的触发条件很奇怪。为了在脱离调试环境的情况下尽可能保留更多线索来辅助解决生产问题,持久化的日志就显得很重要了。目前Ser

基于EF Core存储的国际化服务

前言 .NET 官方有一个用来管理国际化资源的扩展包Microsoft.Extensions.Localization,ASP.NET Core也用这个来实现国际化功能。但是这个包的翻译数据是使用resx资源文件来管理的,这就意味着无法动态管理。虽然官方有在文档中提供了一些第三方管理方案,但是都不太

基于FileZilla上传、下载服务器数据的方法

本文介绍FileZilla软件的下载、配置与使用方法。 在之前的博客中,我们提到了下载高分遥感影像数据需要用到FTP(文件传输协议,File Transfer Protocol)软件FileZilla;这一软件用以在自己的电脑与服务器之间相互传输数据,在进行下载科学数据、网站开发等等操作时,经常需要

Vite5+Electron聊天室|electron31跨平台仿微信EXE客户端|vue3聊天程序

基于electron31+vite5+pinia2跨端仿微信Exe聊天应用ViteElectronChat。 electron31-vite5-chat原创研发vite5+electron31+pinia2+element-plus跨平台实战仿微信客户端聊天应用。实现了聊天、联系人、收藏、朋友圈/短

基于 .net core 8.0 的 swagger 文档优化分享-根据命名空间分组显示

之前也分享过 Swashbuckle.AspNetCore 的使用,不过版本比较老了,本次演示用的示例版本为 .net core 8.0,从安装使用开始,到根据命名空间分组显示,十分的有用

跟我一起学习和开发动态表单系统-前端用vue、elementui实现方法(3)

基于 Vue、Element UI 和 Spring Boot + MyBatis 的动态表单系统前端实现解析 在现代企业信息系统中,动态表单是一种非常常见的功能。它可以根据业务需求灵活地调整表单结构,以满足不同的数据收集和展示需求。在本文中,我们将探讨一种基于 Vue、Element UI 和 S