本文分享自华为云社区《Kubernetes多集群管理Karmada,跨集群弹性伸缩FederatedHPA突破新边界!》,作者:华为云云原生团队。
根据 Flexera 最新发布的《2023年云现状调查报告》,750家受访企业中,高达36%的企业表示云成本支出超过预期,另有9%的企业云成本严重超出预期,企业急需有效手段来降低云成本支出:
▲ 图片1
同时,在这些企业中,有高达87%的企业使用多云,多云架构的优势在于可以方便的提供业务高可用部署、满足安全合规的属地化部署、以及公有云弹性等能力,但如果缺少相应的成本管理,也容易导致云成本增加。
▲ 图片2
为了解决多云多集群下的成本难题,Karmada 率先提出并实现了支持多指标,多策略的全新跨集群HPA(即 FederatedHPA),实现业务跨集群弹性伸缩,为多云架构提供了新的玩法,比如本地数据中心+公有云的组合,业务优先使用本地数据中心资源,当本地资源不足时又可以借助公有云无限弹性能力,做到按需使用云资源,进而节省云成本开支。
Karmada FederatedHPA 可基于 CPU/Memory 利用率来自动伸缩业务,也可以基于各种自定义指标伸缩业务,其 YAML 配置示例为:
apiVersion: autoscaling.karmada.io/v1alpha1 kind: FederatedHPA metadata: name: nginx spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: nginx minReplicas: 1 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 10
通过使用 FederatedHPA,可以实现应用跨集群弹性能力,如下图所示,应用部署在 cluster1 集群中,当流量洪峰到来时,应用可以先在 cluster1 集群中自动扩容,当 cluster1 资源受限时,应用可以自动在 cluster2 集群中扩容。
▲ 图片3
当然,Karmada FederatedHPA 带来的不仅仅是跨集群弹性伸缩,还能带来如下核心优势:
1.对于一个多集群业务,在每个集群中都有对应HPA资源,以伸缩业务。但分别管理这些HPA配置较为低效,而使用 Karmada FederatedHPA 能够统一配置多集群业务的伸缩,简化流程。
2.对于一个使用 Karmada FederatedHPA 的多集群业务,实例数会随着负载变化而变化。而这些新增或者减少的实例数,用户想要在不同集群,差异化的伸缩,如按可用资源比例,静态权重比例,优先顺序等。Karmada FederatedHPA 同样可满足这样的多集群差异化伸缩的诉求。
3.对于一个使用 Karmada FederatedHPA 的多集群业务,在某个集群因故障而无法弹性时,Karmada 会在其他正常集群弹性,从而解决单点故障问题。
传统的部署方式下,用户如果想在多个集群中配置弹性伸缩,以匹配业务请求负载,需要逐一管理集群中的 HPA,繁琐而且容易出错,如下图:
▲ 图片4
使用 Karmade FederatedHPA,能够实现统一配置多集群业务的弹性伸缩,在集群数量较多的情况下,能极大提高效率,如下图:
▲ 图片5
通过单一 FederatedHPA 对象,Karmada 会自动监测多个集群的业务负载,根据配置的策略,在不同的集群伸缩,最终匹配多集群服务的业务负载。
对于同一业务部署的多个集群,可能存在成本差异,用户可以利用 FederatedHPA 实现优先扩容成本更低集群的业务,实现更低的云成本消耗,例如:本地数据中心集群使用成本更低,公有云厂商提供的托管集群成本更高,因此,用户更愿意在本地数据中心中扩容业务。
下面我们给出一个优先扩容本地集群业务的例子:
apiVersion: autoscaling.karmada.io/v1alpha1 kind: FederatedHPA metadata: name: nginx spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: nginx minReplicas: 1 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 80 --- apiVersion: policy.karmada.io/v1alpha1 kind: PropagationPolicy metadata: name: nginx spec: resourceSelectors: - apiVersion: apps/v1 kind: Deployment name: nginx placement: clusterAffinities: - affinityName: local-cluster clusterNames: - local-cluster1 - affinityName: cloud-cluster clusterNames: - local-cluster1 - huawei-cluster1 replicaScheduling: replicaDivisionPreference: Weighted replicaSchedulingType: Divided weightPreference: dynamicWeight: AvailableReplicas
上面 PropagationPolicy 中配置有 本地集群组(local-cluster)和云上集群组(cloud-cluster)共两个集群组,Karmada 在扩容业务时,会优先尝试扩容在本地集群组中的业务,如果失败(缺乏资源),则继续扩容云上集群组的业务,从而实现在本地集群资源足够时,优先扩容本地集群的业务,实现更低的云成本消耗。
FederatedHPA 为用户提供了跨集群弹性伸缩的能力,结合丰富的PropagationPolicy/ClusterPropagationPolicy 调度策略,能满足不同的跨集群伸缩场景。
Karmada 后续也会继续探索更多的跨集群伸缩场景,包括 定时联邦 HPA,分布式多集群 HPA,大家有任何感兴趣的想法,都欢迎大家来 Karmada 社区进行讨论和分享。
附:Karmada社区交流地址
Karmada官网:https://karmada.io/
项目地址:https://github.com/karmada-io/karmada
Slack地址:https://slack.cncf.io/