每当向他人介绍 Semantic Kernel, 会得到的第一个问题就是 Semantic Kernel 类似于LangChain吗,或者是c# 版本的LangChain吗? 为了全面而不想重复的回答这个问题,因此我写下这篇文章。
在 ChatGPT 之前,构建 集成AI的应用程序的主要分为两个步骤:
有了GPT以后 构建与 AI 集成的应用程序过去要简单得多,应用程序员开发人员直接访问OpenAI的REST API,将它集成到我们的应用中,但是真正开始集成的时候才发现挑战不仅仅是调用API,例如:
这中间需要有一个业务流程协调程序。该服务编排来自各种依赖项(OpenAI、Azure 搜索、数据库等)的输入和输出,并将其拼接在一起。
这就是像Semantic Kernel和LangChain这样的库的用武之地。这些库可帮助开发人员:
LangChain目前是“最成熟”(但相当新的)拥有大型开源社区的。第一次提交是在 2022 年10月。
Semantic Kernel(SK)是相对“较新的”,但它是为开发人员构建的。第一次提交是在 2023 年 2 月。
这两个库我们选择使用哪一个,我觉得主要的考虑因素是开发人员的技能,LLM 已经将机器学习的门槛降低到普通开发人员就可以开发AI应用,SK 在帮助应用开发人员开发AI方面的帮助会比LangChain更大,我会选择采用SK来构建AI应用。
相关链接
路由链(RouterChain)是由LLM根据输入的Prompt去选择具体的某个链。路由链中一般会存在多个Prompt,Prompt结合LLM决定下一步选择哪个链。
作为LLM(大模型)开发框架的宠儿,LangChain在短短几年内迅速崛起,成为开发者们不可或缺的工具。本文将带你探讨LangChain和LangChainHub的发展历程。