< Python全景系列-3 > Python控制流程盘点及高级用法、神秘技巧大揭秘!

python,全景,系列,控制,流程,盘点,高级,用法,神秘,技巧,揭秘 · 浏览次数 : 473

小编点评

**文章摘要** 文章介绍了Python的控制流程,包括条件语句、循环结构和异常处理。它还介绍了一些高级控制流程工具,例如列表解析、生成器表达式和装饰器。文章还分享了一些使用这些工具的例子。 **关键词** * 条件语句 * 循环 * 异常处理 * 列表解析 * 生成器表达式 * 装饰器

正文

欢迎来到我们的系列博客《Python全景系列》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。

 

这是系列第三篇,在这篇文章中我们将全面深入地介绍 Python 的控制流程,包括条件语句、循环结构和异常处理等关键部分,尤其会将列表解析、生成器、装饰器等高级用法一网打尽。此外,我还将分享一些独特的见解和研究发现,希望能给你带来新的启发。文章的结尾,我们将有一个 "One More Thing" 环节,我会分享一个很特别但又很少人知道的有用的 Python 控制流程的技巧。

 

一、条件语句(If-Elif-Else)

Python的条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。条件语句的基本形式包括 if、if-else 和 if-elif-else 三种。

 
# if 语句
x = 10
if x > 0:
    print("x is positive")

# if-else 语句
if x % 2 == 0:
    print("x is even")
else:
    print("x is odd")

# if-elif-else 语句
if x < 0:
    print("x is negative")
elif x == 0:
    print("x is zero")
else:
    print("x is positive")

 注意Python的缩进规则,这是Python语法的一大特色。缩进用于区分代码块,比如以上if-elif-else的代码块。此外,Python中没有类似C++、Java的大括号{}来控制语句块,完全依赖于缩进。

 

二、循环结构(For和While)

Python中的循环有两种,一种是for循环,一种是while循环。

 
1 # for循环
2 for i in range(5):
3     print(i)
4 
5 # while循环
6 count = 0
7 while count < 5:
8     print(count)
9     count += 1

Python的for循环更像是一个遍历循环,它会遍历序列中的每一个元素。而在很多其他语言中,for循环是通过条件判断来控制循环的。Python中的range()函数在很多情况下都非常有用,特别是在循环结构中。

 

三、异常处理(Try-Except)

在Python中,我们可以使用try-except语句来处理可能出现的错误或异常。

try:
    print(1 / 0)
except ZeroDivisionError:
    print("You can't divide by zero!")

Python的异常处理机制是一个很强大的工具,它可以帮助我们在出现错误或异常时保持程序的正常运行。不仅如此,Python的异常处理还支持多个except子句,这样我们可以对不同类型的异常进行不同的处理。此外,我们还可以使用finally子句,无论是否发生异常,finally子句中的代码总会被执行,常常用于进行清理工作。

 

 四、控制流程的高级用法!

Python 的控制流程不仅仅局限于简单的条件判断、循环和异常处理。Python 还有很多高级的控制流程工具,它们可以帮助我们更高效、更精简地编写代码。以下是一些常见的高级控制流程工具:

1. 列表解析

列表解析是一种创建列表的简洁方法,它在一行代码中就可以完成循环和条件判断等操作。以下是一个列表解析的例子:

squares = [x**2 for x in range(10)]

以上代码会生成一个包含 0 到 9 的平方的列表。这个列表解析的过程可以理解为:对于每个在 `range(10)` 中的 `x`,计算 `x` 的平方,然后将结果添加到列表中。列表解析相比普通的循环语句,不仅代码更简洁,而且执行速度更快。这是因为列表解析在内部实现了优化,而普通的循环语句没有。

 

2. 生成器表达式

生成器表达式和列表解析类似,但它生成的是一个生成器对象,而不是一个实际的列表。生成器对象是一个可迭代的对象,它在每次迭代时都会生成新的值,而不是一次性生成所有的值。以下是一个生成器表达式的例子:

squares = (x**2 for x in range(10))

以上代码会创建一个生成器对象,这个对象会在每次迭代时生成一个平方数。你可以通过 `next()` 函数或者 `for` 循环来迭代这个对象。生成器表达式比列表解析更节省内存,因为它不需要一次性生成所有的值。这在处理大规模数据时非常有用。

 

3. 装饰器 

装饰器是一个非常强大的工具,它允许我们修改一个函数或者类的行为,而不需要改变它的源代码。以下是一个简单的装饰器例子:

 1 def my_decorator(func):
 2     def wrapper():
 3         print("Something is happening before the function is called.")
 4         func()
 5         print("Something is happening after the function is called.")
 6     return wrapper
 7 
 8 @my_decorator
 9 def say_hello():
10     print("Hello!")
11 
12 say_hello()

以上代码定义了一个装饰器 `my_decorator`,它会在调用 `say_hello` 函数前后分别打印一段消息。`@my_decorator` 就是将 `say_hello` 函数装饰成 `my_decorator` 的方式。装饰器可以用来做很多事情,比如日志记录、性能测试、事务处理、缓存等等。在很多情况下,使用装饰器可以让我们的代码更加干净,更易于管理和重用。

 

One More Thing!!

我在阅读GitHub和各种技术博客中发现了一个很特别但又很少人知道的Python控制流程技巧——使用`else`子句在`for`和`while`循环中。

许多人可能不知道,`for`循环和`while`循环可以有一个可选的`else`子句,它在循环正常结束时执行。如果循环被`break`语句终止,`else`子句将不会被执行。

 

 1 for i in range(5):
 2     print(i)
 3 else:
 4     print("Loop finished!")
 5 
 6 count = 0
 7 while count < 5:
 8     print(count)
 9     count += 1
10 else:
11     print("Loop finished!")

这个特性在很多情况下都非常有用,比如我们在循环中搜索一个元素,如果找到了就通过`break`语句终止循环,如果循环正常结束还没有找到,就执行`else`子句中的代码。

 

希望你在阅读这篇文章后,能对Python的控制流程有更深入的理解。如果你有任何问题或者有更好的建议,欢迎在下方留言,我们一起探讨,一起学习。

与< Python全景系列-3 > Python控制流程盘点及高级用法、神秘技巧大揭秘!相似的内容:

< Python全景系列-3 > Python控制流程盘点及高级用法、神秘技巧大揭秘!

全面深入地介绍 Python 的控制流程,包括条件语句、循环结构和异常处理等关键部分,尤其会将列表解析、生成器、装饰器等高级用法一网打尽。此外,我还将分享一些独特的见解和研究发现,希望能给你带来新的启发。文章的结尾,我们将有一个 "One More Thing" 环节,我会分享一个很特别但又很少人知道的有用的 Python 控制流程的技巧。

<Python全景系列-1> Hello World,1分钟配置好你的python环境

欢迎来到我们的系列博客《Python360全景》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。这是我们的第一篇文章,让我们从最基础的开始:如何在你的电脑上配置Python环境。

< Python全景系列-2 > Python数据类型大盘点

Python作为一门强大且灵活的编程语言,拥有丰富的数据类型系统。本文详细介绍了Python中的每一种数据类型,包括数值、序列、映射、集合、布尔和None类型。每种数据类型的特性、使用方式,以及在实际问题中的应用都将被深入探讨。此外,我们还将探讨Python的动态类型特性,以及如何在实际编程中充分利用这些数据类型来简化代码和提高效率。在文章的最后,我还将分享一个可能你还不知道,但非常有用的特性。

< Python全景系列-4 > 史上最全文件类型读写库大盘点!什么?还包括音频、视频?

介绍史上最全PYTHON文件类型读写库大盘点!包含常用和不常用的大量文件格式!文本、音频、视频应有尽有!废话不多说!走起来!

< Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

深入探讨Python中的并发编程,特别关注多线程和多进程的应用。我们将先从基本概念开始,然后通过详细举例探讨每一种机制,最后分享一些实战经验以及一种优雅的编程技巧。

< Python全景系列-6 > 掌握Python面向对象编程的关键:深度探索类与对象

Python全景系列的第六篇,本文将深入探讨Python语言中的核心概念:类(Class)和对象(Object)。我们将介绍这些基本概念,然后通过示例代码详细展示Python中的类和对象如何工作,包括定义、实例化和修改等操作。本文将帮助您更深入地理解Python中的面向对象编程(OOP),并从中提出一些不常见但很有用的技术观点。

< Python全景系列-7 > 提升Python编程效率:模块与包全面解读

Python全景系列的第七篇,本文将深入探讨Python模块与包的基本概念,使用方法以及其在实际项目中的应用。我们也会揭示一些鲜为人知,却又实用的技术细节。

< Python全景系列-8 > Python超薄感知,超强保护:异常处理的绝佳实践

欢迎来到系列第八篇,异常处理的深入探讨。本文将分五部分展开。首先,我们将学习Python异常处理的基础知识,理解`try/except`语句的用法。然后,我们将了解Python的常见异常类型并通过实例理解它们的作用。第三部分,我们将更深入地解析`try-except`块,理解其工作原理及更加复杂的用法。在第四部分,我们会介绍如何自定义异常,并讨论其应用场景。最后,我们将介绍上下文管理器在异常处理中

< Python全景系列-9 > Python 装饰器:优雅地增强你的函数和类

装饰器在 Python 中扮演了重要的角色,这是一种精巧的语言特性,让我们能够修改或增强函数和类的行为,无需修改它们的源代码。这篇文章将深入探讨装饰器的所有相关主题,包括装饰器的基础知识、实现与使用、工作原理,以及通过实际例子学习装饰器的独特用法。

Python常见面试题016. 请实现如下功能|谈谈你对闭包的理解

016. 请实现如下功能|谈谈你对闭包的理解 摘自<流畅的python> 第七章 函数装饰器和闭包 实现一个函数(可以不是函数)avg,计算不断增加的系列值的平均值,效果如下 def avg(...): pass avg(10) =>返回10 avg(20) =>返回10+20的平均值15 avg(