< Python全景系列-9 > Python 装饰器:优雅地增强你的函数和类

python,全景,系列,装饰,优雅,增强,函数 · 浏览次数 : 326

小编点评

**Python 装饰器简介** 装饰器是 Python 中一种精巧的语言特性,它允许我们修改或增强函数和类的行为,无需修改源代码。装饰器在语法上表现为一个前置于函数或类定义之前的特殊标记:@simple_decoratordef hello_world(): print(\"Hello, world!\")在这个例子中,simple_decorator 是一个装饰器,它作用于下方的 hello_world 函数。 **装饰器的功能** 装饰器可以用于: * **修改函数行为:** 例如,我们可以使用装饰器来日志记录函数执行过程。 * **增强函数行为:** 例如,我们可以使用装饰器来缓存函数结果。 * **创建新的函数:** 例如,我们可以使用装饰器来创建一个名为 `wrapper` 的新函数,它与原始函数具有相同的名称和参数。 **使用装饰器的步骤** 1. 使用 `@decorator` 装饰函数或类。 2. 装饰函数时,可可选地传递参数。 3. 返回一个新的函数,它将替代原始函数。 **示例** ```python # 装饰器用于日志记录 import logging def log_decorator(func): logging.basicConfig(level=logging.INFO) @wraps(func) def wrapper(*args, **kwargs): logging.info(f'Running \"{func.__name__}\" with arguments {args} and kwargs {kwargs}') result = func(*args, **kwargs) logging.info(f'Finished \"{func.__name__}\" with result {result}') return result return wrapper # 使用装饰器记录函数日志 @log_decorator def hello_world(): print("Hello, world!") # 使用装饰器缓存函数结果 def cache_result(func): cache = {} @wraps(func) def wrapper(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapper # 使用装饰器创建新的函数 def wrapper_function(x, y): return x + y # 使用装饰器链 def add(x, y): return x + y ``` **总结** 装饰器是一种强大的工具,可以让我们更有效地管理和组织代码。了解装饰器的用法可以帮助我们编写更简洁、更高效的代码。

正文

欢迎来到我们的系列博客《Python全景系列》第九篇!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。

** 装饰器在 Python 中扮演了重要的角色,这是一种精巧的语言特性,让我们能够修改或增强函数和类的行为,无需修改它们的源代码。这篇文章将深入探讨装饰器的所有相关主题,包括装饰器的基础知识、实现与使用、工作原理,以及通过实际例子学习装饰器的独特用法。**

Python 装饰器深入探讨

在 Python 中,装饰器提供了一种简洁的方式,用来修改或增强函数和类的行为。装饰器在语法上表现为一个前置于函数或类定义之前的特殊标记:

@simple_decorator
def hello_world():
    print("Hello, world!")

在这个例子中,simple_decorator 是一个装饰器,它作用于下方的 hello_world 函数。装饰器在概念上就像一个包装器,它可以在被装饰的函数执行前后插入任意的代码,进而改变被装饰函数的行为。

参数化装饰器

我们还可以进一步将装饰器参数化,这让装饰器的行为更具灵活性。比如,我们可以定义一个装饰器,让它在函数执行前后打印自定义的消息:

def message_decorator(before_message, after_message):
    def decorator(func):
        def wrapper(*args, **kwargs):
            print(before_message)
            result = func(*args, **kwargs)
            print(after_message)
            return result
        return wrapper
    return decorator

@message_decorator("Start", "End")
def hello_world():
    print("Hello, world!")

在这个例子中,message_decorator 是一个参数化装饰器,它接受两个参数,分别代表函数执行前后要打印的消息。

理解装饰器的工作原理

在 Python 中,函数是第一类对象。这意味着函数和其他对象一样,可以作为变量进行赋值,可以作为参数传给其他函数,可以作为其他函数的返回值,甚至可以在一个函数里面定义另一个函数。这个特性是实现装饰器的基础。

def decorator(func):
    def wrapper():
        print('Before function execution')
        func()
        print('After function execution')
    return wrapper

def hello_world():
    print('Hello, world!')

decorated_hello = decorator(hello_world)
decorated_hello()

在这个例子中,decorator 函数接收一个函数 hello_world 作为参数,并返回了一个新的函数 wrapped_func。这个新函数在 hello_world 函数执行前后分别打印一条消息。我们可以看到,装饰器实际上是一个返回函数的函数。

函数签名保持

默认情况下,装饰器会“掩盖”掉原函数的名字和文档字符串。这是因为在装饰器内部,我们返回了一个全新的函数。我们可以使用 functools.wraps 来解决这个问题:

import functools

def decorator(func):
    @functools.wraps(func)
    def wrapper():
        print('Before function execution')
        func()
        print('After function execution')
    return wrapper

@decorator
def hello_world():
    "Prints 'Hello, world!'"
    print('Hello, world!')

print(hello_world.__name__)
print(hello_world.__doc__)

这样,使用装饰器后的函数名和文档字符串能够保持不变。

Python 装饰器的应用实例

装饰器在实际的 Python 编程中有许多应用场景,比如日志记录、性能测试、事务处理、缓存、权限校验等。

一个常见的应用就是使用装饰器进行日志记录:

import logging

def log_decorator(func):
    logging.basicConfig(level=logging.INFO)
    
    def wrapper(*args, **kwargs):
        logging.info(f'Running "{func.__name__}" with arguments {args} and kwargs {kwargs}')
        result = func(*args, **kwargs)
        logging.info(f'Finished "{func.__name__}" with result {result}')
        return result
    
    return wrapper

@log_decorator
def add(x, y):
    return x + y

这个装饰器记录了函数的名称,函数调用的参数,以及函数返回的结果。

装饰器链

Python 允许我们将多个装饰器应用到一个函数上,形成一个装饰器链。例如,我们可以同时应用日志装饰器和性能测试装饰器:

import time
import logging
from functools import wraps

def log_decorator(func):
    logging.basicConfig(level=logging.INFO)
    
    @wraps(func)
    def wrapper(*args, **kwargs):
        logging.info(f'Running "{func.__name__}" with arguments {args} and kwargs {kwargs}')
        result = func(*args, **kwargs)
        logging.info(f'Finished "{func.__name__}" with result {result}')
        return result

    return wrapper

def timer_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f'Function "{func.__name__}" took {end_time - start_time} seconds to run.')
        return result

    return wrapper

@log_decorator
@timer_decorator
def add(x, y):
    time.sleep(2)
    return x + y

在这个例子中,@log_decorator@timer_decorator 两个装饰器被同时应用到 add 函数上,它们分别负责记录日志和测量函数运行时间。

One More Thing: 自动注册装饰器

一个有趣的装饰器应用是自动注册。这个装饰器会在装饰函数时自动将函数添加到一个列表或字典中,这样我们就可以在程序的其他地方访问到这个列表或字典,知道有哪些函数被装饰过。

# 装饰器将函数注册到一个列表中
def register_decorator(func_list):
    def decorator(func):
        func_list.append(func)
        return func
    return decorator

# 自动注册函数
registered_functions = []
@register_decorator(registered_functions)
def foo():
    pass

@register_decorator(registered_functions)
def bar():
    pass

print(registered_functions)  # 输出: [<function foo at 0x10d38d160>, <function bar at 0x10d38d1f0>]

这个装饰器可以用于自动注册路由、插件系统、命令行参数处理等场景,能够大大提高代码的灵活性和可扩展性。

总结

Python 装饰器是一种强大的工具,它可以让我们更有效地管理和组织代码。希望通过这篇文章,你能够更深入地理解装饰器的工作原理和用法,从而在你的项目中更好地使用装饰器。

如有帮助,请多关注
个人微信公众号:【Python全视角】
TeahLead_KrisChang,10+年的互联网和人工智能从业经验,10年+技术和业务团队管理经验,同济软件工程本科,复旦工程管理硕士,阿里云认证云服务资深架构师,上亿营收AI产品业务负责人。

与< Python全景系列-9 > Python 装饰器:优雅地增强你的函数和类相似的内容:

< Python全景系列-9 > Python 装饰器:优雅地增强你的函数和类

装饰器在 Python 中扮演了重要的角色,这是一种精巧的语言特性,让我们能够修改或增强函数和类的行为,无需修改它们的源代码。这篇文章将深入探讨装饰器的所有相关主题,包括装饰器的基础知识、实现与使用、工作原理,以及通过实际例子学习装饰器的独特用法。

<Python全景系列-1> Hello World,1分钟配置好你的python环境

欢迎来到我们的系列博客《Python360全景》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。这是我们的第一篇文章,让我们从最基础的开始:如何在你的电脑上配置Python环境。

< Python全景系列-2 > Python数据类型大盘点

Python作为一门强大且灵活的编程语言,拥有丰富的数据类型系统。本文详细介绍了Python中的每一种数据类型,包括数值、序列、映射、集合、布尔和None类型。每种数据类型的特性、使用方式,以及在实际问题中的应用都将被深入探讨。此外,我们还将探讨Python的动态类型特性,以及如何在实际编程中充分利用这些数据类型来简化代码和提高效率。在文章的最后,我还将分享一个可能你还不知道,但非常有用的特性。

< Python全景系列-3 > Python控制流程盘点及高级用法、神秘技巧大揭秘!

全面深入地介绍 Python 的控制流程,包括条件语句、循环结构和异常处理等关键部分,尤其会将列表解析、生成器、装饰器等高级用法一网打尽。此外,我还将分享一些独特的见解和研究发现,希望能给你带来新的启发。文章的结尾,我们将有一个 "One More Thing" 环节,我会分享一个很特别但又很少人知道的有用的 Python 控制流程的技巧。

< Python全景系列-4 > 史上最全文件类型读写库大盘点!什么?还包括音频、视频?

介绍史上最全PYTHON文件类型读写库大盘点!包含常用和不常用的大量文件格式!文本、音频、视频应有尽有!废话不多说!走起来!

< Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

深入探讨Python中的并发编程,特别关注多线程和多进程的应用。我们将先从基本概念开始,然后通过详细举例探讨每一种机制,最后分享一些实战经验以及一种优雅的编程技巧。

< Python全景系列-6 > 掌握Python面向对象编程的关键:深度探索类与对象

Python全景系列的第六篇,本文将深入探讨Python语言中的核心概念:类(Class)和对象(Object)。我们将介绍这些基本概念,然后通过示例代码详细展示Python中的类和对象如何工作,包括定义、实例化和修改等操作。本文将帮助您更深入地理解Python中的面向对象编程(OOP),并从中提出一些不常见但很有用的技术观点。

< Python全景系列-7 > 提升Python编程效率:模块与包全面解读

Python全景系列的第七篇,本文将深入探讨Python模块与包的基本概念,使用方法以及其在实际项目中的应用。我们也会揭示一些鲜为人知,却又实用的技术细节。

< Python全景系列-8 > Python超薄感知,超强保护:异常处理的绝佳实践

欢迎来到系列第八篇,异常处理的深入探讨。本文将分五部分展开。首先,我们将学习Python异常处理的基础知识,理解`try/except`语句的用法。然后,我们将了解Python的常见异常类型并通过实例理解它们的作用。第三部分,我们将更深入地解析`try-except`块,理解其工作原理及更加复杂的用法。在第四部分,我们会介绍如何自定义异常,并讨论其应用场景。最后,我们将介绍上下文管理器在异常处理中

Python常见面试题016. 请实现如下功能|谈谈你对闭包的理解

016. 请实现如下功能|谈谈你对闭包的理解 摘自<流畅的python> 第七章 函数装饰器和闭包 实现一个函数(可以不是函数)avg,计算不断增加的系列值的平均值,效果如下 def avg(...): pass avg(10) =>返回10 avg(20) =>返回10+20的平均值15 avg(