Python 列表推导式:简洁、高效的数据操作艺术

python,列表,推导,简洁,高效,数据,操作,艺术 · 浏览次数 : 347

小编点评

**列表推导式简介:** 列表推导式是一种在 Python 中创建列表的方式,它允许您使用表达式对列表中的元素进行操作,从而生成一个新的列表。它可以用于创建各种数据结构,例如列表、字典和集合。 **基础概念:** 列表推导式的语法如下: ```python [expression for item in iterable] ``` 其中: * `expression` 是一个用于生成新列表的表达式。 * `iterable` 是一个可迭代的对象,例如列表、字符串或字典。 **例子:** ```python squares = [x**2 for x in range(10)] print(squares) # 输出:[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] ``` **进阶用法:** * **过滤元素:**使用 `if` 条件进行元素过滤。 ```python even_squares = [x**2 for x in range(10) if x % 2 == 0] ``` * **嵌套列表推导式:**使用其他列表推导式来创建嵌套列表。 ```python nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] flattened_list = [x for sublist in nested_list for x in sublist] print(flattened_list) # 输出:[1, 2, 3, 4, 5, 6, 7, 8, 9] ``` * **数据变形:**使用表达式对数据进行变形。 ```python strings = ['Hello', 'World', 'In', 'Python'] lowercase_strings = [s.lower() for s in strings] print(lowercase_strings) # 输出:['hello', 'world', 'in', 'python'] ``` **性能优化:** 列表推导式比传统的 `map` 或 `filter` 函数效率更高。这是因为列表推导式直接执行表达式对每个元素进行操作,而 `map` 和 `filter` 函数需要使用内部循环进行迭代。 **其他应用:** * **全排列:**使用列表推导式生成所有元素的排列组合。 ```python perms = [(x, y, z) for x in range(3) for y in range(3) for z in range(3) if x != y and y != z and x != z] print(perms) # 输出:[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] ```

正文

Python 列表推导式:简洁、高效的数据操作艺术

Python 的列表推导式,这个看似简单的语法糖,实则内含无限威力。在 Python 代码编写中,列表推导式的灵活性和简洁性让它成为了不可或缺的一部分。在这篇文章中,我们将更全面、更深入地探讨列表推导式,从基础的概念认识,到各类进阶的用法和操作,我们一一揭秘。最后,我们还将在 "One More Thing" 部分分享一个非常有趣且实用的列表推导式技巧,这会让你在编程道路上又多一份强大的工具。

1. 列表推导式:语法糖的力量

列表推导式,就是一种在 Python 中创建列表的方式,它的基础形式如下:

[expression for item in iterable]

它实质上是一个 for 循环的简化形式。例如,我们可以用它来创建一个包含 0 到 9 平方的列表:

squares = [x**2 for x in range(10)]
print(squares) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

这样,你不需要再使用传统的 for 循环来创建列表,代码更加简洁和清晰。

2. 过滤元素:带条件的列表推导式

列表推导式更强大的地方在于,我们可以在其中加入条件判断,以过滤出我们想要的元素:

even_squares = [x**2 for x in range(10) if x % 2 == 0]
print(even_squares) # Output: [0, 4, 16, 36, 64]

在这个例子中,我们只生成了偶数的平方,只需加入一个简单的 if 条件,我们就可以灵活地过滤出我们需要的元素。

3. 复杂的数据结构:嵌套的列表推导式

更进一步,列表推导式还可以嵌套使用,处理更复杂的数据结构,比如我们要将一个嵌套列表展平:

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened_list = [x for sublist in nested_list for x in sublist]
print(flattened_list) # Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

这个例子中,我们将一个二维的嵌套列表展平成了一维列表,就像是将多层次的数据展开,方便我们进行后续处理。

4. 数据变形:带表达式的列表推导式

列表推导式中的表达式可以帮助我们对数据进行变形:

strings = ['Hello', 'World', 'In', 'Python']
lowercase_strings = [s.lower() for s in strings]
print(lowercase_strings) # Output: ['hello', 'world', 'in', 'python']

在这个例子中,我们将一个包含几个字符串的列表,通过 str.lower() 函数,将其转换成了全小写。通过改变表达式,我们可以在生成新列表的同时,对数据进行各种变形操作。

5. 推广至其他数据结构:字典和集合的推导式

推导式不仅仅可以应用于列表,还可以推广到字典和集合中:

squared_dict = {x: x**2 for x in range(5)}
print(squared_dict) # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

squared_set = {x**2 for x in range(5)}
print(squared_set) # Output: {0, 1, 4, 16, 9}

这两个例子分别演示了字典推导式和集合推导式的用法,这些结构的推导式可以更方便我们处理复杂的数据结构。

6. 性能优化:列表推导式与 map/filter 的比较

列表推导式不仅代码更加简洁,实际上在很多情况下,列表推导式的执行效率也优于传统的 mapfilter 函数:

import time

# Using list comprehension
start_time = time.time()
squares = [x**2 for x in range(1000000)]
end_time = time.time()
print(f"List comprehension took {end_time - start_time} seconds")

# Using map function
start_time = time.time()
squares = list(map(lambda x: x**2, range(1000000)))
end_time = time.time()
print(f"Map function took {end_time - start_time} seconds")

在这个例子中,我们分别用列表推导式和 map 函数创建一个包含一百万个元素的列表,可以看到列表推导式的执行时间通常要少于 map 函数。

One More Thing

在我的 GitHub 学习过程以及在各种技术博客中阅读,我发现一个关于列表推导式的有趣且实用的技巧,那就是使用列表推导式实现全排列:

perms = [(x, y, z) for x in range(3) for y in range(3) for z in range(3) if x != y and y != z and x != z]
print(perms) # Output: [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]

这个例子通过列表推导式生成了 3 个元素的全排列,使用了嵌套循环和条件判断,非常简洁而高效。

总的来说,Python 的列表推导式是一个非常强大而灵活的工具,能够帮助我们更好地处理数据和创建数据结构。希望这篇文章能帮助你更深入地理解和应用列表推导式,让你的 Python 代码更加简洁和高效。

如有帮助,请多关注
个人微信公众号:【Python全视角】
TeahLead_KrisChang,10+年的互联网和人工智能从业经验,10年+技术和业务团队管理经验,同济软件工程本科,复旦工程管理硕士,阿里云认证云服务资深架构师,上亿营收AI产品业务负责人。

与Python 列表推导式:简洁、高效的数据操作艺术相似的内容:

Python 列表推导式:简洁、高效的数据操作艺术

# Python 列表推导式:简洁、高效的数据操作艺术 Python 的列表推导式,这个看似简单的语法糖,实则内含无限威力。在 Python 代码编写中,列表推导式的灵活性和简洁性让它成为了不可或缺的一部分。在这篇文章中,我们将更全面、更深入地探讨列表推导式,从基础的概念认识,到各类进阶的用法和操作

增补博客 第二十三篇 python 对比Python中的列表、元组、字典、集合、字符串等之间异同

1. 列表(List): - 异同:列表是可变(Mutable)的有序容器,使用方括号 [] 定义,可以存储任意类型的元素。可以通过索引访问和修改列表中的元素。列表支持切片操作和列表推导式。 - 相同:列表可以存储重复的元素和不同类型的元素。 2. 元组(Tuple): - 异同:元组是不可变(Im

一篇文章掌握Python中多种表达式的使用:算术表达式、字符串表达式、列表推导式、字典推导式、_集合推导式、_生成器表达式、逻辑表达式、函数调用表达式

Python 中的表达式可以包含各种元素,如变量、常量、运算符、函数调用等。以下是 Python 表达式的一些分类及其详细例子: 1. 算术表达式 算术表达式涉及基本的数学运算,如加、减、乘、除等。 # 加法表达式 sum = 3 + 5 # 结果为 8 # 乘法表达式 product = 4 *

Python 列表操作指南3

示例,将新列表中的所有值设置为 'hello': newlist = ['hello' for x in fruits] 表达式还可以包含条件,不像筛选器那样,而是作为操纵结果的一种方式: 示例,返回 "orange" 而不是 "banana": newlist = [x if x != "bana

Python 列表操作指南1

Python 列表 mylist = ["apple", "banana", "cherry"] 列表用于在单个变量中存储多个项目。列表是 Python 中的 4 种内置数据类型之一,用于存储数据集合,其他 3 种分别是元组(Tuple)、集合(Set)和字典(Dictionary),它们具有不同的

有关 python 切片的趣事

哈喽大家好,我是咸鱼 今天来讲一个我在实现 python 列表切片时遇到的趣事 在正式开始之前,我们先来了解一下**切片(slice)** 切片操作是访问序列(列表、字符串......)中元素的另一种方法,它可以访问一定范围内的元素,通过切片操作,可以生成一个新的序列 语法如下 ```python

NumPy 数组创建方法与索引访问详解

NumPy 创建数组 NumPy 中的核心数据结构是 ndarray,它代表多维数组。NumPy 提供了多种方法来创建 ndarray 对象,包括: 使用 array() 函数 array() 函数是最常用的方法之一,它可以将 Python 列表、元组甚至其他数组转换为 ndarray 对象。 语法

NumPy 数组切片及数据类型介绍

NumPy 数组切片 NumPy 数组切片用于从数组中提取子集。它类似于 Python 中的列表切片,但支持多维数组。 一维数组切片 要从一维数组中提取子集,可以使用方括号 [] 并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号 : 分隔。 语法: arr[start:end:step]

从原始边列表到邻接矩阵Python实现图数据处理的完整指南

本文介绍了如何使用Python将原始边列表转换为邻接矩阵,并进行了一系列的扩展和优化,以满足不同场景下的需求。

Python常见面试题009. 元组和列表有什么区别

009. 元组和列表有什么区别 这个题是简单的,但要拿满分或者说高分不容易 相同点 | 共性 | 说明 | | | | | 可以存放任意元素 | 一般都放同类型 | | 支持索引访问 | 甚至是负数 | | 支持切片操作 | | | 逗号分隔元素 | | | 都是有序集合(容器) | | | 可以随