pandas(进阶操作)-- 政治献金项目数据分析

pandas,进阶,操作,政治,献金,项目,数据分析 · 浏览次数 : 12

小编点评

```python import pandas as pd # 处理缺失值 df['contb_receipt_amt'] = df['contb_receipt_amt'].fillna(value='NOT PROVIDE', inplace=True) # 获取数据信息 df.info() # 统计各个候选人的党派收款总数 df['party'] = df['cand_nm'].map(parties) print(df['party'].unique()) # 获取各个党派收款总金额 df['contb_receipt_amt'] = df['contb_receipt_amt'].groupby(by='party')['contb_receipt_amt'].sum() # 打印老兵(捐献者职业)的捐赠金额 print(df[df['contbr_occupation'] == 'DISABLED VETERAN']['contb_receipt_amt'].sum()) # 对其他党派进行统计 df_old = df[df['contbr_occupation'] == 'DISABLED VETERAN'] print(df_old.groupby(by='cand_nm')['contb_receipt_amt'].sum()) ```

正文

博客地址:https://www.cnblogs.com/zylyehuo/

开发环境

  • anaconda
    • 集成环境:集成好了数据分析和机器学习中所需要的全部环境
    • 安装目录不可以有中文和特殊符号
  • jupyter
    • anaconda提供的一个基于浏览器的可视化开发工具
import numpy as np
import pandas as pd

为了方便操作,将月份和参选人以及所在政党进行定义

months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6,
          'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}
of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick', 
               'Paul, Ron', 'Gingrich, Newt']
parties = {
  'Bachmann, Michelle': 'Republican',
  'Romney, Mitt': 'Republican',
  'Obama, Barack': 'Democrat',
  "Roemer, Charles E. 'Buddy' III": 'Reform',
  'Pawlenty, Timothy': 'Republican',
  'Johnson, Gary Earl': 'Libertarian',
  'Paul, Ron': 'Republican',
  'Santorum, Rick': 'Republican',
  'Cain, Herman': 'Republican',
  'Gingrich, Newt': 'Republican',
  'McCotter, Thaddeus G': 'Republican',
  'Huntsman, Jon': 'Republican',
  'Perry, Rick': 'Republican'           
 }

需求

  • 加载数据
  • 查看数据的基本信息
  • 指定数据截取,将如下字段的数据进行提取,其他数据舍弃
    • cand_nm :候选人姓名
    • contbr_nm : 捐赠人姓名
    • contbr_st :捐赠人所在州
    • contbr_employer : 捐赠人所在公司
    • contbr_occupation : 捐赠人职业
    • contb_receipt_amt :捐赠数额(美元)
    • contb_receipt_dt : 捐款的日期
  • 对新数据进行总览,查看是否存在缺失数据
  • 用统计学指标快速描述数值型属性的概要。
  • 空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE
  • 异常值处理。将捐款金额<=0的数据删除
  • 新建一列为各个候选人所在党派party
  • 查看party这一列中有哪些不同的元素
  • 统计party列中各个元素出现次数
  • 查看各个党派收到的政治献金总数contb_receipt_amt
  • 查看具体每天各个党派收到的政治献金总数contb_receipt_amt
  • 将表中日期格式转换为'yyyy-mm-dd'
  • 查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

加载数据并查看数据的基本信息

df = pd.read_csv('./data/usa_election.txt')
df

对数据进行总览,查看是否存在缺失数据

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 16 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   cmte_id            536041 non-null  object 
 1   cand_id            536041 non-null  object 
 2   cand_nm            536041 non-null  object 
 3   contbr_nm          536041 non-null  object 
 4   contbr_city        536026 non-null  object 
 5   contbr_st          536040 non-null  object 
 6   contbr_zip         535973 non-null  object 
 7   contbr_employer    525088 non-null  object 
 8   contbr_occupation  530520 non-null  object 
 9   contb_receipt_amt  536041 non-null  float64
 10  contb_receipt_dt   536041 non-null  object 
 11  receipt_desc       8479 non-null    object 
 12  memo_cd            49718 non-null   object 
 13  memo_text          52740 non-null   object 
 14  form_tp            536041 non-null  object 
 15  file_num           536041 non-null  int64  
dtypes: float64(1), int64(1), object(14)
memory usage: 65.4+ MB

用统计学指标快速描述数值型属性的概要

df.describe()

空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE

df.fillna(value='NOT PROVIDE',inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 16 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   cmte_id            536041 non-null  object 
 1   cand_id            536041 non-null  object 
 2   cand_nm            536041 non-null  object 
 3   contbr_nm          536041 non-null  object 
 4   contbr_city        536041 non-null  object 
 5   contbr_st          536041 non-null  object 
 6   contbr_zip         536041 non-null  object 
 7   contbr_employer    536041 non-null  object 
 8   contbr_occupation  536041 non-null  object 
 9   contb_receipt_amt  536041 non-null  float64
 10  contb_receipt_dt   536041 non-null  object 
 11  receipt_desc       536041 non-null  object 
 12  memo_cd            536041 non-null  object 
 13  memo_text          536041 non-null  object 
 14  form_tp            536041 non-null  object 
 15  file_num           536041 non-null  int64  
dtypes: float64(1), int64(1), object(14)
memory usage: 65.4+ MB

异常值处理。将捐款金额<=0的数据删除

df['contb_receipt_amt'] <= 0  # 判断哪些值为小于等于0
df.loc[df['contb_receipt_amt'] <= 0]  # 捐赠金额小于等于0的行数据
drop_indexs = df.loc[df['contb_receipt_amt'] <= 0].index
df.drop(labels=drop_indexs,axis=0,inplace=True)
df

新建一列为各个候选人所在党派party

df['party'] = df['cand_nm'].map(parties)
df.head()

查看party这一列中有哪些不同的元素

df['party'].unique()
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)

统计party列中各个元素出现次数

df['party'].value_counts()
Democrat       289999
Republican     234300
Reform           5313
Libertarian       702
Name: party, dtype: int64

查看各个党派收到的政治献金总数contb_receipt_amt

df.groupby(by='party')['contb_receipt_amt'].sum()
party
Democrat       8.259441e+07
Libertarian    4.132769e+05
Reform         3.429658e+05
Republican     1.251181e+08
Name: contb_receipt_amt, dtype: float64

查看具体每天各个党派收到的政治献金总数contb_receipt_amt

df.groupby(by=['contb_receipt_dt','party'])['contb_receipt_amt'].sum()
contb_receipt_dt  party      
01-APR-11         Reform             50.00
                  Republican      12635.00
01-AUG-11         Democrat       182198.00
                  Libertarian      1000.00
                  Reform           1847.00
                                   ...    
31-MAY-11         Republican     313839.80
31-OCT-11         Democrat       216971.87
                  Libertarian      4250.00
                  Reform           3205.00
                  Republican     751542.36
Name: contb_receipt_amt, Length: 1183, dtype: float64

将表中日期格式转换为'yyyy-mm-dd'

def trandformDate(d):
    day,month,year = d.split('-')
    month = months[month]#将英文形式的月份转换成了数字形式的月份
    return '20'+year+'-'+str(month)+'-'+day
df['contb_receipt_dt'] = df['contb_receipt_dt'].map(trandformDate)
df.head()

查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

  • 给谁捐赠的钱越多表示越支持谁
# 可以先将源数据中的老兵这个职业对应的行数据取出
df['contbr_occupation'] == 'DISABLED VETERAN'
0         False
1         False
2         False
3         False
4         False
          ...  
536036    False
536037    False
536038    False
536039    False
536040    False
Name: contbr_occupation, Length: 530314, dtype: bool
df_old = df.loc[df['contbr_occupation'] == 'DISABLED VETERAN']
df_old

# 分组:根据候选人分组,对捐赠金额求和
df_old.groupby(by='cand_nm')['contb_receipt_amt'].sum()
cand_nm
Cain, Herman       300.00
Obama, Barack     4205.00
Paul, Ron         2425.49
Santorum, Rick     250.00
Name: contb_receipt_amt, dtype: float64

与pandas(进阶操作)-- 政治献金项目数据分析相似的内容:

pandas(进阶操作)-- 政治献金项目数据分析

博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 import numpy as np

pandas(进阶操作)-- 处理非数值型数据 -- 数据分析三剑客(核心)

博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 import numpy as np

【pandas基础】--概述

Pandas是一个开源的Python数据分析库。 它提供了快速,灵活和富有表现力的数据结构,旨在使数据清洗和分析变得简单而快速。 Pandas是基于NumPy数组构建的,因此它在许多NumPy函数上提供了直接的支持。它还提供了用于对表格数据进行操作的数据结构,例如Series和DataFrame。

Pandas 使用教程 Series、DataFrame

[TOC] Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算) Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。 Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工

【pandas小技巧】--拆分列

拆分列是`pandas`中常用的一种数据操作,它可以将一个包含多个值的列按照指定的规则拆分成多个新列,方便进行后续的分析和处理。拆分列的使用场景比较广泛,以下是一些常见的应用场景: 1. 处理日期数据:在日期数据中,经常会将年、月、日等信息合并成一列,通过拆分列可以将其拆分成多个新列,方便进行时间序

【pandas小技巧】--反转行列顺序

反转`pandas` `DataFrame`的行列顺序是一种非常实用的操作。在实际应用中,当我们需要对数据进行排列或者排序时,通常会使用到Pandas的行列反转功能。这个过程可以帮助我们更好地理解数据集,发现其中的规律和趋势。同时,行列反转还可以帮助我们将数据可视化,使得图表更加易于理解。 除了常规

【pandas基础】--索引和轴

在`pandas`中,索引(`index`)是用于访问数据的关键。 它为数据提供了基于标签的访问能力,类似于字典,可以根据标签查找和访问数据。 而`pandas`的轴(`axis`)是指数据表中的一个维度,可以理解为表格中的行和列。 通过指定轴,我们可以对数据进行切片、筛选、聚合等操作。 下面简要介

【pandas基础】--数据整理

pandas进行数据整理的意义在于,它是数据分析、数据科学和机器学习的前置步骤。 通过数据整理可以提前了解数据的概要,缺失值、重复值等情况,为后续的分析和建模提供更为可靠的数据基础。 本篇主要介绍利用pandas进行数据整理的各种方法。 1. 数据概要 获取数据概要信息可以帮助我们了解数据的基本情况

【pandas基础】--数据类型

数据类型是计算机编程中将不同类型的数据值分类和定义的方式。 通过数据类型,可以确定数据的存储方式和内存占用量,了解不同类型的数据进行各种运算的能力。 使用`pandas`进行数据分析时,最常用到的几种类型是: 1. 字符串类型,各类文本内容都是字符串类型 2. 数值类型,包括整数和浮点数,可用于计算

pandas:时间序列数据的周期转换

时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K