本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。
大家好,我是小彭。
今天是 LeetCode 第 334 场周赛,你参加了吗?这场周赛考察范围比较基础,整体难度比较平均,第一题难度偏高,第四题需要我们在算法里实现 “反复横跳”,非常有意思。
小彭的 Android 交流群 02 群来了,公众号回复 “加群” 加入我们~
https://leetcode.cn/problems/left-and-right-sum-differences/
给你一个下标从 0 开始的整数数组 nums
,请你找出一个下标从 0 开始的整数数组 answer
,其中:
answer.length == nums.length
answer[i] = |leftSum[i] - rightSum[i]|
其中:
leftSum[i]
是数组 nums
中下标 i
左侧元素之和。如果不存在对应的元素,leftSum[i] = 0
。rightSum[i]
是数组 nums
中下标 i
右侧元素之和。如果不存在对应的元素,rightSum[i] = 0
。返回数组 answer
。
简单模拟题,使用两个变量记录前后缀和。
class Solution {
fun leftRigthDifference(nums: IntArray): IntArray {
var preSum = 0
var sufSum = nums.sum()
val n = nums.size
val result = IntArray(n)
for (index in nums.indices) {
sufSum -= nums[index]
result[index] = Math.abs(preSum - sufSum)
preSum += nums[index]
}
return result
}
}
复杂度分析:
https://leetcode.cn/problems/find-the-divisibility-array-of-a-string/
给你一个下标从 0 开始的字符串 word
,长度为 n
,由从 0
到 9
的数字组成。另给你一个正整数 m
。
word
的 可整除数组 div
是一个长度为 n
的整数数组,并满足:
word[0,...,i]
所表示的 数值 能被 m
整除,div[i] = 1
div[i] = 0
返回 word
的可整除数组。
这道题主要靠大数处理。
将前缀字符串 [0, i] 转换为有 2 种方式:
String#substring(0, i + 1)
裁剪子串,再转换为数字;前缀 * 10 + word[i]
逐位计算。但是,这 2 种方式在大数 case 中会遇到整型溢出变为负数,导致判断出错的情况,我们想办法保证加法运算不会整型溢出。我们发现: 在处理完 [i - 1] 位置后,不必记录 [0, i-1] 的整段前缀,而仅需要记录前缀对 m 的取模结果。
例如当 m
为 3 时,“11 * 10 + 1 = 111”
与 “(11 % 3) * 10 + 1 = 21”
都能够对 3 整除。也可以这样理解:前缀中能被 m
整除的加法因子在后续运算中乘以 10 后依然能够被 m
整数,所以这部分加法因子应该尽早消掉。
另外还有一个细节:由于 m
的最大值是 $10^9$,前缀的取模结果的最大值为 $10^9 - 1$,而当前位置的最大值是 9,加法后依然会溢出,因此我们要用 Long 记录当前位置。
class Solution {
fun divisibilityArray(word: String, m: Int): IntArray {
val n = word.length
val div = IntArray(n)
var num = 0L
for (index in word.indices) {
num = num * 10 + (word[index] - '0')
num %= m
if (num == 0L) div[index] = 1
}
return div
}
}
复杂度分析:
https://leetcode.cn/problems/find-the-maximum-number-of-marked-indices/
给你一个下标从 0 开始的整数数组 nums
。
一开始,所有下标都没有被标记。你可以执行以下操作任意次:
i
和 j
,满足 2 * nums[i] <= nums[j]
,标记下标 i
和 j
。请你执行上述操作任意次,返回 nums
中最多可以标记的下标数目。
这道题的难度是找到贪心规律。
题目要求:选择两个互不相同且未标记的下标 i 和 j ,满足 2 * nums[i] <= nums[j] ,标记下标 i 和 j 。我们发现题目并不关心 [i] 和 [j] 的选择顺序,所以对排序不会影响问题结果,而且排序能够更方便地比较元素大小,因此题目的框架应该是往 排序 + [贪心 / 双指针 / 二分 / DP] 的思路思考。
比赛过程中的思考过程记录下来:
陷入僵局……
开始转换思路:能否将数组拆分为两部分,作为 nums[i]
的分为一组,作为 nums[j]
的分为一组。 例如,在用例 [1 2 | 3 6] 和 [1 2 | 4 6] 和 [2 3 | 4 8]中,将数组的前部分作为 nums[i] 而后半部分作为 nums[j] 时,可以得到最优解,至此发现贪心规律。
设数组的长度为 n,最大匹配对数为 k。
nums[i]
且使用数组的右半部分作为 nums[j]
总能取到最优解。反之,如果使用右半部分的某个数 nums[t]
作为 nums[i]
,相当于占用了一个较大的数,不利于后续 nums[i]
寻找配对。将数组拆分为两部分后:
nums[i]
时,nums[j]
越小越好,否则会占用一个较大的位置,不利于后续 nums[i]
寻找配对。因此最优解一定是使用左半部分的最小值与右半部分的最小值配对。可以使用双指针求解:
class Solution {
fun maxNumOfMarkedIndices(nums: IntArray): Int {
nums.sort()
val n = nums.size
var count = 0
var j = (n + 1) / 2
outer@ for (i in 0 until n / 2) {
while (j < n) {
if (nums[i] * 2 <= nums[j++]) {
count += 2
continue@outer
}
}
}
return count
}
}
简化写法:
class Solution {
fun maxNumOfMarkedIndices(nums: IntArray): Int {
nums.sort()
val n = nums.size
var i = 0
for (j in (n + 1) / 2 until n) {
if (2 * nums[i] <= nums[j]) i++
}
return i * 2
}
}
复杂度分析:
https://leetcode.cn/problems/minimum-time-to-visit-a-cell-in-a-grid/
给你一个 m x n
的矩阵 grid
,每个元素都为 非负 整数,其中 grid[row][col]
表示可以访问格子 (row, col)
的 最早 时间。也就是说当你访问格子 (row, col)
时,最少已经经过的时间为 grid[row][col]
。
你从 最左上角 出发,出发时刻为 0
,你必须一直移动到上下左右相邻四个格子中的 任意 一个格子(即不能停留在格子上)。每次移动都需要花费 1 单位时间。
请你返回 最早 到达右下角格子的时间,如果你无法到达右下角的格子,请你返回 -1
。
这道题是单源正权最短路的衍生问题,先回顾以一下类似的最短路问题解决方案:
这道题是求从一个源点到目标点的最短路径,并且这条路径上没有负权值,符合 Dijkstra 算法的应用场景。
Dijkstra 算法的本质是贪心 + BFS,我们需要将所有节点分为 2 类,在每一轮迭代中,我们从 “候选集” 中选择距离起点最短路长度最小的节点,由于该点不存在更优解,所以可以用该点来 “松弛” 相邻节点。
现在,我们分析在题目约束下,如何将原问题转换为 Dijkstra 最短路问题。
我们定义 dis[i][j]
表示到达 (i, j)
的最短时间,根据题目约束 “grid[row][col]
表示可以访问格子 (row, col)
最早时间” 可知,dis[i][j]
的最小值不会低于 grid[i][j]
。
现在需要思考如何推导出递推关系:
假设已经确定到达位置 (i, j)
的最短时间是 time
,那么相邻位置 (x, y)
的最短时间为:
time + 1 ≥ grid[x][y]
,那么不需要等待就可以进入,进入 (x, y)
的最短时间就是 time + 1;time + 1 < grid[x][y]
,那么必须通过等待消耗时间进入。由于题目不允许原地停留消耗时间,因此只能使出回退 “反复横跳 A→ B → A” 来消耗时。因此有 dis[x][y] = Math.max(time + 1, grid[x][y])
。(x, y)
点的最短时间 dis[x][y]
与 x + y
的奇偶性一定相同,如果不同必然需要 + 1。例如 $\begin{bmatrix}至此,我们可以写出朴素版本的算法。
class Solution {
fun minimumTime(grid: Array<IntArray>): Int {
// 无解
if (grid[0][1] > 1 && grid[1][0] > 1) return -1
// 无效值
val INF = Integer.MAX_VALUE
val n = grid.size
val m = grid[0].size
// 最短路长度
val dis = Array(n) { IntArray(m) { INF } }.apply {
this[0][0] = 0
}
// 访问标记
val visit = Array(n) { BooleanArray(m) }
// 方向
val directions = arrayOf(intArrayOf(0, 1), intArrayOf(0, -1), intArrayOf(1, 0), intArrayOf(-1, 0))
while (true) {
var x = -1
var y = -1
// 寻找候选集中的最短时间
for (i in 0 until n) {
for (j in 0 until m) {
if (!visit[i][j] && (-1 == x || dis[i][j] < dis[x][y])) {
x = i
y = j
}
}
}
val time = dis[x][y]
// 终止条件
if (x == n - 1 && y == m - 1) return time
// 标记
visit[x][y] = true
// 枚举相邻位置
for (direction in directions) {
val newX = x + direction[0]
val newY = y + direction[1]
// 越界
if (newX !in 0 until n || newY !in 0 until m || visit[newX][newY]) continue
var newTime = Math.max(time + 1, grid[newX][newY])
newTime += (newTime - newX - newY) % 2
// 松弛相邻点
if (newTime < dis[newX][newY]) {
dis[newX][newY] = newTime
}
}
}
}
}
复杂度分析:
朴素 Dijkstra 的每轮迭代中需要遍历 N 个节点寻找候选集中的最短路长度。
事实上,这 N 个节点中有部分是 “确定集”,有部分是远离起点的边缘节点,每一轮都遍历所有节点显得没有必要。常用的套路是配合小顶堆记录候选集,以均摊 $O(lgN)$ 时间找到深度最近的节点中的最短路长度:
class Solution {
fun minimumTime(grid: Array<IntArray>): Int {
// 无解
if (grid[0][1] > 1 && grid[1][0] > 1) return -1
// 无效值
val INF = Integer.MAX_VALUE
val n = grid.size
val m = grid[0].size
// 最短路长度
val dis = Array(n) { IntArray(m) { INF } }.apply {
this[0][0] = 0
}
// 小顶堆:三元组 <x, y, dis>
val heap = PriorityQueue<IntArray>() { e1, e2 ->
e1[2] - e2[2]
}.apply {
this.offer(intArrayOf(0, 0, 0))
}
// 方向
val directions = arrayOf(intArrayOf(0, 1), intArrayOf(0, -1), intArrayOf(1, 0), intArrayOf(-1, 0))
while (true) {
// 寻找候选集中的最短时间
val node = heap.poll()
val x = node[0]
val y = node[1]
val time = node[2]
// 终止条件
if (x == n - 1 && y == m - 1) return time
// 枚举相邻位置
for (direction in directions) {
val newX = x + direction[0]
val newY = y + direction[1]
// 越界
if (newX !in 0 until n || newY !in 0 until m) continue
var newTime = Math.max(time + 1, grid[newX][newY])
newTime += (newTime - newX - newY) % 2
// 松弛相邻点
if (newTime < dis[newX][newY]) {
dis[newX][newY] = newTime
heap.offer(intArrayOf(newX, newY, newTime))
}
}
}
}
}
复杂度分析:
这道题也有二分的做法。
为了能够有充足的时间走到目标点,我们可以考虑在起点进行反复横跳消耗时间 0/2/4/6/8/12 … MAX_VALUE。极端情况下,只要我们在起点消耗足够长的时间后,总能够有充足的时间走到右下角。
我们发现在起点消耗时间对结果的影响具有单调性:
因此我们的算法是:使用二分查找寻找满足条件的最小 fullTime,并在每轮迭代中使用 BFS 走曼哈顿距离,判断是否可以走到目标点,最后再修正 fullTime 与 m + n
的奇偶性。
class Solution {
// 方向
private val directions = arrayOf(intArrayOf(0, 1), intArrayOf(0, -1), intArrayOf(1, 0), intArrayOf(-1, 0))
fun minimumTime(grid: Array<IntArray>): Int {
// 无解
if (grid[0][1] > 1 && grid[1][0] > 1) return -1
// 无效值
val INF = Integer.MAX_VALUE
val n = grid.size
val m = grid[0].size
var left = Math.max(grid[n - 1][m - 1], m + n - 2)
var right = 1e5.toInt() + m + n - 2
while (left < right) {
val mid = (left + right) ushr 1
if (checkBFS(grid, mid)) {
right = mid
} else {
left = mid + 1
}
}
// (left - m + n) % 2 确保奇偶性一致
return left + (left - m + n) % 2
}
// 检查从 fullTime 开始是否可以等待能否到达左上角
private fun checkBFS(grid: Array<IntArray>, fullTime: Int): Boolean {
val n = grid.size
val m = grid[0].size
val visit = Array(n) { BooleanArray(m) }.apply {
this[n - 1][m - 1] = true
}
val queue = LinkedList<IntArray>().apply {
this.offer(intArrayOf(n - 1, m - 1))
}
var time = fullTime - 1
while (!queue.isEmpty()) {
// 层序遍历
for (count in 0 until queue.size) {
val node = queue.poll()!!
val x = node[0]
val y = node[1]
for (direction in directions) {
val newX = x + direction[0]
val newY = y + direction[1]
// 越界
if (newX !in 0 until n || newY !in 0 until m) continue
// 已访问
if (visit[newX][newY]) continue
// 不可访问
if (time < grid[newX][newY]) continue
// 可访问
if (newX == 0 && newY == 0) return true
queue.offer(intArrayOf(newX, newY))
visit[newX][newY] = true
}
}
// 时间流逝 1 个单位
time--
}
return false
}
}
复杂度分析:
这周的周赛题目就讲到这里,我们下周见。