物理学又不存在了?ChatGPT:室温超导是物理学的一个梦想

物理学,存在,chatgpt,室温,超导,一个,梦想 · 浏览次数 : 106

小编点评

**小彭:** * 一组微信聊天记录突然开始在各大群中流传。 * 这一新闻直接引爆各大社交媒体,物理学又双叒叕不存在了吗? * 原来在美国物理学会的三月会议上,美国纽约罗切斯特大学的 Ranga Dias 团队发布了一项研究成果——他们发现了能够在室温环境下实现超导现象的材料。 * 超导体 就是 “超级能导电的物体”,就是电阻为 0 的物体。 * 零电阻传输电能就没有损耗,可以极大地提高能源的利用率,减少能源的损耗和浪费,对全世界的用电模式有极大的影响。 **其他重要信息:** * 超导体并非新概念,只是之前研发的超导材料存在很大的局限性,要么需要极低温,要么需要极高压强。 * Dias 团队这次的研究成果的关键突破是近环境压强(一万个大气压强)和 21 度室温,相比于以往动辄几百万大气压强和液氮低温环境已经是很大的进步。

正文

大家好,我是小彭。

就在前天,一组微信聊天记录突然开始在各大群中流传:

随后,这一新闻直接引爆各大社交媒体,物理学又双叒叕不存在了吗?

到底是什么重磅消息呢?

原来在美国物理学会的三月会议上,美国纽约罗切斯特大学的 Ranga Dias 团队发布了一项研究成果 —— 他们发现了能够在室温环境下实现超导现象的材料。

简单来说 “超导体” 就是 “超级能导电的物体”,就是电阻为 0 的物体。零电阻传输电能就没有损耗,可以极大地提高能源的利用率,减少能源的损耗和浪费,对全世界的用电模式有极大的影响。 如果能实现商用,将极大地促进小到芯片大到电网输电甚至可控核聚变的发展。

不过超导体并不是新概念,只是之前研发的超导材料存在很大的局限性,要么需要极低温,要么需要极高压强。而 Dias 团队这次的研究成果的关键突破是近环境压强(一万个大气压强)和 21 度室温,相比于以往动辄几百万大气压强和液氮低温环境已经是很大的进步。


知道这个消息后,有些人坐不住了。室温超导才刚在物理学界掀起小浪花,在二级市场已经一石激起千层浪。室温超导能否改变世界不知道,反正至少能改变股价,股价先冲一波:

于是,不少 A 股股民(韭菜)闻声而动,开始连夜学习室温超导相关知识,还有人乐此不疲地在微信群内里分享专家交流纪要。后来事情越来越离谱,室温超导开始传成温室超导……


为了防止成为二级市场上跟风的韭菜,我决定找 ChatGPT 问问看:

ChatGPT 也提到了电阻造成的能量损耗问题,还说室温超导是物理学中的长期梦想,格局还是你大。

第二个问题是研究成果的可靠性:

Dias 团队在超导领域的论文曾经被 Nature 撤稿,所以这次的研究成果还面临着很多挑战。

在 Nature 杂志上,还有一篇与 Dias 团队同期发布的点评文章 《Hopes raised for room-temperature superconductivity, but doubts remain》 ,这篇文章介绍了 Dias 团队的实验结果和方法,以及其他研究者对他们的质疑和批评。文章认为: 这项研究有可能是一个重大的突破,但也需要更多的证据和复现来支持它。

看来这项实验成果的可靠性还需要让子弹飞一会~

第三个问题是我比较感兴趣的点,我们在 《程序员学习 CPU 有什么用?》这篇文章里提到过 CPU 主频的性能瓶颈问题:一般来说,提升主频对于 CPU 的性能影响是最直接的,但是计算性能越高则功耗也越大,发热也会越严重。

最近几年 CPU 主频的提升遇到瓶颈,主要是因为提升主频增加的热量反而会导致 CPU 性能下降或损坏,如果无法解决散热问题就无法进一步提升 CPU 主频。

所以我问下超导体对于 CPU 功耗瓶颈的影响:

这是个有趣的问题 🌚,但是理论到落地到 CPU 上还有很长的要走。

总结一下:目前来说室温超导的可行性是积极乐观的,但是距离应用落地还有很长的路要走,如果实现的话,确实会对科技和社会产生巨大的影响。

想要拿到一颗超导体的 CPU 还远着呢,等着吧……

至于二级市场,姑妄言之姑妄听之……

按照 ChatGPT 的话来说,室温超导是物理学的一个梦想!

与物理学又不存在了?ChatGPT:室温超导是物理学的一个梦想相似的内容:

物理学又不存在了?ChatGPT:室温超导是物理学的一个梦想

大家好,我是小彭。 就在前天,一组微信聊天记录突然开始在各大群中流传: 随后,这一新闻直接引爆各大社交媒体,物理学又双叒叕不存在了吗? 到底是什么重磅消息呢? 原来在美国物理学会的三月会议上,美国纽约罗切斯特大学的 Ranga Dias 团队发布了一项研究成果 —— 他们发现了能够在室温环境下实现超

[转帖]Linux 页表、大页与透明大页

一、 内存映射与页表 1. 内存映射 我们通常所说的内存容量,指的是物理内存,只有内核才可以直接访问物理内存,进程并不可以。 Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。 虚拟地址空间的内部又被分为内

[转帖]Linux 页表、大页与透明大页

一、 内存映射与页表 1. 内存映射 我们通常所说的内存容量,指的是物理内存,只有内核才可以直接访问物理内存,进程并不可以。 Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。 虚拟地址空间的内部又被分为内

如何在现实场景中随心放置AR虚拟对象?

随着AR的发展和电子设备的普及,人们在生活中使用AR技术的门槛降低,比如对于不方便测量的物体使用AR测量,方便又准确;遇到陌生的路段使用AR导航,清楚又便捷;网购时拿不准的物品使用AR购物,体验更逼真。 想要让虚拟物体和现实世界相融合,重要的一步就是将虚拟对象准确放置在现实场景中,当用户触摸电子屏幕

【Java】Java中的零拷贝

物理内存 计算机物理内存条的容量,比如我们买电脑会关注内存大小有多少G,这个容量就是计算机的物理内存。 虚拟内存 操作系统为每个进程分配了独立的虚拟地址空间,也就是虚拟内存,虚拟地址空间又分为用户空间和内核空间,操作系统的位数不同,虚拟地址空间的大小也不同,32位操作系统虚拟地址内核空间为1G,用户

聊聊Embedding(嵌入向量)

摘要自《深入浅出Embedding》一问。具体详细内容请移步该书。 ## 概述 简单来说,嵌入是用向量表示一个物体,这个物体可以是一个单词、一条语句、一个序列、一件商品、一个动作、一本书、一部电影等,可以说嵌入(Embedding)涉及机器学习、深度学习的绝大部分对象。这些对象是机器学习和深度学习中

聊聊基于Alink库的推荐系统

概述 Alink提供了一系列与推荐相关的组件,从组件使用得角度来看,需要重点关注如下三个方面: 算法选择 推荐领域有很多算法,常用的有基于物品/用户的协同过滤、ALS、FM算法等。对于不同的数据场景,算法也会在计算方式上有很大的变化。 推荐方式 输入信息可以有多种选择,输入结果也有多种情况。 同时输

如何用3D流体实现逼真水流效果?

华为应用市场在2022年HDC大会期间发布了一款3D水流主题,基于华为HMS Core Scene Kit服务能力,展现立体灵动的水流岛屿,可跟随用户指尖实现实时流体波动效果,既趣味又解压。 让变幻莫测的物质来实现我们在影视和游戏等多种应用场景中的奇思妙想,从早期步骤繁重的特效制作演变到如今,已经有

如何用3D流体实现逼真水流效果?

华为应用市场在2022年HDC大会期间发布了一款3D水流主题,基于华为HMS Core Scene Kit服务能力,展现立体灵动的水流岛屿,可跟随用户指尖实现实时流体波动效果,既趣味又解压。 让变幻莫测的物质来实现我们在影视和游戏等多种应用场景中的奇思妙想,从早期步骤繁重的特效制作演变到如今,已经有

知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - Java SpringBoot 操作 Neo4j

上一篇使用了 CQL 实现了太极拳传承谱,这次使用JAVA SpringBoot 实现,只演示获取信息,源码连接在文章最后 三要素 在知识图谱中,通过三元组 集合的形式来描述事物之间的关系: - 实体:又叫作本体,指客观存在并可相互区别的事物,可以是具体的人、事、物,也可以是抽象的概念或联系,实体是