⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。
学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。
本文是 LeetCode 上分之旅系列的第 42 篇文章,往期回顾请移步到文章末尾~
T1. 距离原点最远的点(Easy)
T2. 找出美丽数组的最小和(Medium)
T3. 使子序列的和等于目标的最少操作次数(Hard)
T4. 在传球游戏中最大化函数值(Hard)
https://leetcode.cn/problems/furthest-point-from-origin/
根据题意 “_” 既可以作为 “L” 也可以作为 “R”。容易想到,为了使得终点距离原点更远,当所有 “_” 仅作为 “L” 或 “R” 对结果的贡献是最优的,此时问题的结果就取决于 “L” 和 “R” 的差绝对值。
class Solution {
fun furthestDistanceFromOrigin(moves: String): Int {
return moves.count{ it == '_' } + abs(moves.count{ it == 'L' } - moves.count{ it == 'R' })
}
}
一次遍历:
class Solution {
fun furthestDistanceFromOrigin(moves: String): Int {
var cntL = 0
var cntR = 0
for (e in moves) {
when (e) {
'L' -> {
cntL ++
cntR --
}
'R' -> {
cntL --
cntR ++
}
else -> {
cntL ++
cntR ++
}
}
}
return max(abs(cntL), abs(cntR))
}
}
复杂度分析:
https://leetcode.cn/problems/find-the-minimum-possible-sum-of-a-beautiful-array/
这道题与上周周赛 359 T2 2829. k-avoiding 数组的最小总和 相比,除了数据范围之外是完全相同的,有点离谱。
从 $1$ 开始从小到大枚举,如果当前元素 $cur$ 与已选列表不冲突,则加入结果中。为了验证是否冲突,我们使用散列表在 $O(1)$ 时间复杂度判断。
class Solution {
fun minimumPossibleSum(n: Int, k: Int): Long {
val set = HashSet<Int>()
var sum = 0L
var cur = 1
repeat(n) {
while (!set.isEmpty() && set.contains(k - cur)) cur++
sum += cur
set.add(cur)
cur++
}
return sum
}
}
复杂度分析:
这道题还可以继续挖掘数学规律,我们发现当我们从 $1$ 开始从小到大枚举时,每选择一个数的同时必然会使得另一个数 $k - x$ 不可选。例如:
可以发现,最终选择的元素被分为两部分:
我们令 $m = min(k / 2, n)$,使用求和公式可以 $O(1)$ 求出两部分的总和:
class Solution {
fun minimumPossibleSum(n: Int, k: Int): Long {
val m = 1L * Math.min(n, k / 2)
return m * (m + 1) / 2 + (n - m) * (2 * k + n - m - 1) / 2
}
}
复杂度分析:
https://leetcode.cn/problems/minimum-operations-to-form-subsequence-with-target-sum/
这道题的考点不复杂,难点在模拟问题挺考验编码功底的。
# 二进制位
nums: _ _ _ 1 _ _ _ _
target: _ _ _ _ _ 1 _ _
以示例 1 nums = [1,2,8], target = 7
与示例 2 nums = [1,32,1,2], target = 12
为例,我们将统计 $nums$ 中不同 $2$ 的幂的出现次数:
# 二进制位
nums: _ _ _ _ 1 _ 1 1
target: _ _ _ _ _ 1 1 1
# 二进制位
nums: _ _ 1 _ _ _ 1 2 # 1 出现 2 次
target: _ _ _ _ 1 1 _ _
那么当我们从右向左枚举二进制位 $k$ 时,如果「$nums$ 中小于等于 $2^k$ 的元素和」$≥$ 「$target$ 中低于等于 $k$ 位的值」,那么对于仅考虑 $[0, k]$ 位上的子问题是有解的。否则,我们需要找到 $nums$ 中最近大于 $2^k$ 的最近数组做拆分:
# 只考虑低 2 位,可以构造
nums: _ _ _ _ 1 _ | 1 1
target: _ _ _ _ _ 1 | 1 1
# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums: _ _ _ _ 1 | _ 1 1
target: _ _ _ _ _ | 1 1 1
# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums: _ _ 1 _ _ | _ 1 2
target: _ _ _ _ 1 | 1 _ _
# 只考虑低 6 位,可以构造
nums: _ _ | 1 _ _ _ 1 2
target: _ _ | _ _ 1 1 _ _
组合以上技巧:
思路参考灵神的题解。
注意一个容易 WA 的地方,在开头特判的地方,由于元素和可能会溢出 $Int$ 上界,所以我们需要转换为在 $Long$ 上的求和。
class Solution {
fun minOperations(nums: List<Int>, target: Int): Int {
if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
// if (nums.sum() < target) return -1 // 溢出
// 计数
val cnts = IntArray(32)
for (num in nums) {
var i = 0
var x = num
while (x > 1) {
x = x shr 1
i += 1
}
cnts[i]++
}
var ret = 0
var i = 0
var sum = 0L
while(sum < target) {
// 累加低位的 nums
sum += (cnts[i]) shl i
// println("i=$i, sum=$sum")
// 低 i 位掩码
val mask = (1 shl (i + 1)) - 1
// 构造子问题
if (sum < target and mask) {
var j = i + 1
while (cnts[j] == 0) { // 基于开头的特判,此处一定有解
j++
}
// 拆分
ret += j - i
i = j
} else {
i += 1
}
}
return ret
}
}
复杂度分析:
在计数的部分,我们可以使用散列表模拟,复杂度相同。
class Solution {
fun minOperations(nums: List<Int>, target: Int): Int {
if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
// if (nums.sum() < target) return -1 // 溢出
// 计数
val cnts = HashMap<Int, Int>()
for (num in nums) {
cnts[num] = cnts.getOrDefault(num, 0) + 1
}
var ret = 0
var i = 0
var sum = 0L
while(sum < target) {
// 累加低位的 nums
sum += (cnts[1 shl i] ?: 0) shl i
// println("i=$i, sum=$sum")
// 低 i 位掩码
val mask = (1 shl (i + 1)) - 1
// 构造子问题
if (sum < target and mask) {
var j = i + 1
while (!cnts.containsKey(1 shl j)) { // 基于开头的特判,此处一定有解
j++
}
// 拆分
ret += j - i
i = j
} else {
i += 1
}
}
return ret
}
}
复杂度分析:
思路参考雪景式的题解,前两种写法是在从小到大枚举「选哪个」,我们也可以枚举「不选哪个」。
class Solution {
fun minOperations(nums: MutableList<Int>, target: Int): Int {
var sum = nums.fold(0L) { it, acc -> it + acc }
if (sum < target) return -1
// 排序
nums.sortDescending()
// 从大到小枚举
var ret = 0
var left = target
while (sum > left) {
val x = nums.removeFirst()
if (sum - x >= left){
sum -= x
} else if (x <= left) {
sum -= x
left -= x
} else {
ret += 1
nums.add(0, x / 2)
nums.add(0, x / 2)
}
// println("ret=$ret, sum=$sum, left=$left, x=$x, nums=${nums.joinToString()}")
}
return ret
}
}
复杂度分析:
https://leetcode.cn/problems/maximize-value-of-function-in-a-ball-passing-game/
从近期周赛的趋势看,出题人似乎有意想把 LeetCode 往偏竞赛的题目引导。
这道题如果知道树上倍增算法,其实比第三题还简单一些。
class Solution {
fun getMaxFunctionValue(receiver: List<Int>, k: Long): Long {
val n = receiver.size
val m = 64 - k.countLeadingZeroBits()
// 预处理
// dp[i][j] 表示 i 传球 2^j 次后的节点
val dp = Array(n) { IntArray(m) }
// dp[i][j] 表示 i 传球 2^j 次的路径和
val sum = Array(n) { LongArray(m) }
for (i in 0 until n) {
dp[i][0] = receiver[i]
sum[i][0] = receiver[i].toLong()
}
for (j in 1 until m) {
for (i in 0 until n) { // 这道题没有根节点,不需要考虑 child == -1 的情况
val child = dp[i][j - 1]
// 从 i 条 2^{j-1} 次,再跳 2^{j-1}
dp[i][j] = dp[child][j - 1]
sum[i][j] = sum[i][j - 1] + sum[child][j - 1]
}
}
// 枚举方案
var ret = 0L
for (node in 0 until n) {
var i = node
var x = k
var s = node.toLong() // 起点的贡献
while (x != 0L) {
val j = x.countTrailingZeroBits()
s += sum[i][j]
i = dp[i][j]
x = x and (x - 1)
}
ret = max(ret, s)
}
return ret
}
}
复杂度分析:
另外,这道题还有基于「内向基环树」的 $O(n)$ 解法。
推荐阅读
LeetCode 上分之旅系列往期回顾:
⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~