咬文嚼图式的介绍二叉树、B树/B-树

· 浏览次数 : 35

小编点评

前言 在数据结构的世界里,抽象与具象总是相互依存。树这种数据结构,看似复杂,实则也有其简单的一面。本文将带领大家深入了解树的基本概念、特殊类型以及如何在编程中应用它们。 一、树的基本概念 1. 数据结构与树 树是一种非线性的数据结构,它模拟了一种层次关系。树中的节点可以有多个子节点,但只有一个父节点(除了根节点,它没有父节点)。 2. 常见树类型 常见的树有二叉树、三叉树、四叉树等。其中,二叉树是最基础的树型结构,它的每个节点最多有两个子节点。 二、二叉树 1. 节点分类 在二叉树中,节点可以分为三种类型:根节点、内部节点和叶子节点。根节点是树的顶部节点,没有父节点;内部节点有两个子节点;叶子节点没有子节点。 2. 数学性质 二叉树具有一定的数学性质,如第 i 层的节点数量至多为 $2^i$,深度为 i 的二叉树至多有 $2^{i+1} - 1$ 个节点。 3. 特殊类型 二叉树还有几种特殊类型,如满二叉树、完美二叉树和完全二叉树。满二叉树是每个节点都有 0 或 2 个子节点的二叉树;完美二叉树是深度为 i,且仅有 $2^i - 1$ 个节点的二叉树;完全二叉树是除最后一层外的其余层都是满的,并且最后一层要么是满的,要么在右边缺少连续若干节点的二叉树。 三、二叉搜索树 1. 特性 二叉搜索树(BST)是一种特殊的二叉树,它的特性是左子树的节点值都小于父节点,右子树的节点值都大于父节点。 2. 查找与遍历 二叉搜索树的查找是从根节点开始,如果目标值小于当前节点,则进入左子树;如果目标值大于当前节点,则进入右子树。遍历顺序为先遍历左子树,然后查找当前节点的父节点,最后遍历右子树。 3. 插入与删除 二叉搜索树的插入和删除操作与查找类似。插入时,如果命中则不进行操作;否则,目标值小于当前节点则进入左子树,大于当前节点则进入右子树。删除时,如果命中则删除;否则,按照上述插入的操作进行。 四、自平衡二叉树 1. 问题背景 虽然二叉搜索树在查找和插入方面具有较高的效率,但在某些情况下,它可能会退化为线性结构,导致效率降低。为了解决这个问题,出现了许多自平衡二叉树,如AVL树、红黑树和替罪羊树等。 2. B树简介 B树是一种自平衡二叉树,它解决了二叉搜索树在最坏情况下的性能下降问题。B树的最大特点是可以有多个键值和多个子节点,这使得它在处理大量数据时具有较高的效率。 3. B树特性 B树有以下特性: * 每个节点最多有两个子节点; * 每个节点可以包含多个键值; * 内部节点可以包含子节点,叶子节点不包含子节点; * 根节点的子节点个数范围是 [2, m],其中 m 是树的阶数; * 非根节点的子节点个数范围是 [m/2, m]。 通过以上的介绍,我们可以看出树作为一种重要的数据结构,在计算机科学中有着广泛的应用。无论是基本的二叉树还是复杂的自平衡二叉树,它们都有各自的特点和应用场景。希望本文的介绍能够帮助大家更好地理解树的结构和特性。

正文

前言

因为本人天资愚钝,所以总喜欢将抽象化的事务具象化表达。对于各类眼花缭乱的树,只需要认知到它们只是一种数据结构,类似数组,切片,列表,映射等这些耳熟能详的词汇。对于一个数据结构而言,无非就是增删改查而已,既然各类树也是数据结构,它们就不能逃离增删改查的桎梏。

那么,为什么我们需要树这种数据结构呢,直接用数组不行吗,用切片不行吗?当然可以,只不过现实世界是缤纷杂乱的,而又没有一种万能药式的数据结构以应对千变万化的业务需求。所以,才会有各类树,而且一些“高级”数据结构是基于树形数据结构的,例如映射。

二叉树

在中文语境中,节点结点傻傻分不清楚,故后文以 node 代表 "结点",root node 代表根节点,child node 代表 “子节点”

二叉树是诸多树状结构的始祖,至于为什么不是三叉树,四叉树,或许是因为计算机只能数到二吧,哈哈,开个玩笑。二叉树很简单,每个 node 最多存在两个 child node,第一个节点称之为 root node。

二叉树具备着一些基本的数学性质,不过很简单,定义从 i 从 0 开始:

  • i 层至多有 2i 个 node;
  • 深度为 i 层二叉树至多有 2i+1-1 个 node。

二叉树的特殊类型

这里有兴趣的可以了解一下,不影响后文的阅读。二叉树根据 child node 的不同,衍生出了几种特殊类型:在一颗二叉树中,如果每个 node 都有 0 或 2 个 child node,则二叉树是满二叉树;定义从 i 从 0 开始,一棵深度为 i,且仅有 2i+1−1 个 node 的二叉树,称为完美二叉树;若除最后一层外的其余层都是满的,并且最后一层要么是满的,要么在右边缺少连续若干 node,则此二叉树为完全二叉树

二叉搜索树

二叉搜索树(Binary Search Tree),也叫二叉查找树,有序二叉树,排序二叉树(名字还挺多)。它是一种常用且特殊的二叉树,它具备一个特有的性质,left node(左结点)始终小于 parent node (父结点),right node 始终大于 parent node。

二叉搜索树的查找

  1. 二叉搜索树从 root node 开始,如果命中则返回;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 如果左右都为空,则未命中。

二叉搜索树的遍历

二叉搜索树有不同的遍历方式,这里介绍常用的中序遍历方式:

  1. 先遍历左子树;
  2. 然后查找当前左子树的 parent node;
  3. 遍历右子树。

二叉搜索树的插入

  1. 二叉搜索树从 root node 开始,如果命中则不进行操作;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 最终将值插入搜索停止的地方。

二叉搜索树的删除

二叉树的删除和查询基本一致,只要在命中时删除即可。

  1. 二叉搜索树从 root node 开始,如果命中则删除;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 删除后使用该 node 左子树最大值或者右子树最小值替代该 node。

自平衡二叉树

从上面的几张动图中我们知晓,二叉搜索树不同于线性结构,它可以大大降低查找,插入的时间复杂度。但在特殊情况下,二叉搜索树可能退化为线性结构,假如我们依次插入1,2,3,4,5:

此时,二叉搜索树退化为线性结构,效率重新变回遍历。于是,便出现了自平衡二叉树,例如 AVL 树,红黑树,替罪羊树等。但它们并不是本文重点,下面我要介绍的是另外一种很常见的自平衡二叉树:B树。

B树

B树和B-树是同一个概念。B树相对于二叉树有两点最大的不同:

  • 每个 node 可以有不止一个数值
  • 每个 node 也可以有不止两个 child node

B树有两种类型 node:

  • internal node(内部结点):不仅仅存储数据,也具备 child node;
  • leaf node(叶子结点):仅存储数据,不具备 child node。

这两种 node 不同于前文所提的 root node 和 child node。root 和 child 是相对于阶层的概念,而 internal 和 leaf 是相对于性质的概念

一个简单的图例如下:

图中的蓝色方块是 internal node,绿色则是 leaf node。

B树有一些需要满足的性质,这里的抽象的逻辑有些烧脑,我会对照前面的图片来解释。设定一颗 m 阶的B树,m = 3

设 internal node 的 child node 个数为 k

  1. 如果 internal node 是 root node,那么 k = [2, m],比如上图的 8 有两个 child node(3|6, 10/12);
  2. 如果 internal node 不是 root node,那么 k = [m/2, m],m/2 向上取整,比如上图的 3|6 有三个 child node;
  3. 如果 root node 的 k 为 0,那么 root node 是 leaf 类型的;
  4. 所有 leaf node 在同一层,上图最后一行的六个 node。

设任意 node 键值个数为 n

  1. 对于 internal node, n = k-1, 升序排序,满足 k[i] < k[i+1],比如上图的三个 internal(8,3|6,10|12) 都满足此规律;
  2. 对于 leaf node,n = [0, m-1],同样升序排序,比如上图最后一个的六个 leaf,其键值最多为两个。 

上述的概念有些抽象,但是这是理解B树关键的地方所在,后面在B树的插入讲解,会有更多具象的动图来解释这些概念。

B树的查找

B树的查找类似于二叉树:

  1. 从 root node 开始,如果目标值小于 root node,进入左子树,否则进入右子树;
  2. 遍历 child node 的多个键值;
  3. 如果匹配到键值,则返回;
  4. 如果不匹配,则根据目标值的范围选择对应的子树;
  5. 重复步骤2、3、4,直到匹配成功返回或者未找到。

假如我们要查找 11:

B树的遍历

B树的遍历方式类似二叉搜索树,不过因为B树一个 node 有多个键值和多个 child node,所以需要遍历每个左右子树和键值:

  1. 先遍历第一个左子树,也就是 parent node 第一个键值的左边;
  2. 然后查找当前 parent node 的第一个键值;
  3. 遍历第二个左子树,也就是 parent node 第二个键值的左边;
  4. 遍历完搜索的左子树,最后遍历当前 parent 的最右子树,即最后一个键值的右边。

B树的插入

插入前面的过程和查询一致,在插入后可能需要重整 node,以符合B树的性质,例如插入 16:

  1. 先查找到目标 node,也就是 13|15
  2. 因为这是一颗 3 阶B树,所以 node 最多只能有两个键值,于是向上传递中间值 15;
  3. parent node 最多也只能有两个键值,于是继续向上传递中间值 12;
  4. 此时 root node 是 8|12,需要有三个 child node,于是 10|15 需要拆分,再向下进一步调整,至此,插入 16 完成。

 

B树的删除

删除是插入的逆操作,但是往往比插入更复杂,因为删除后经常需要重整 node:

  1. 先查找到目标 node,也就是 16
  2. 删除 16,此时 15 child node 剩下一个,不符合条件,递归向上调整,一直到根节点;
  3. 直到所有的条件都满足后,删除 16 完成。

与咬文嚼图式的介绍二叉树、B树/B-树相似的内容: