探索贪心算法:解决优化问题的高效策略

· 浏览次数 : 19

小编点评

贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。 一、基本概念 贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。 二、特点 1. 局部最优选择:每一步都选择当前状态下最优的操作。 2. 无需回溯:一旦做出选择,便不会更改。 3. 逐步构建解决方案:从一个初始解开始,通过局部最优选择逐步构建完整解决方案。 三、应用场景 1. 活动选择问题:在活动选择问题中,给定一组活动及其开始和结束时间,要求选择尽可能多的互不重叠的活动。 2. 背包问题(分数背包):在分数背包问题中,物品可以部分装入背包。目标是选择物品使得背包中的总价值最大。 3. 最小生成树(Kruskal 算法):在图论中,最小生成树是连接所有顶点的权重最小的树。Kruskal 算法通过贪心策略选择最小边来构建最小生成树。 四、贪心算法的局限性 虽然贪心算法在许多问题中表现出色,但它并不适用于所有问题。贪心算法不能保证所有情况下都能找到全局最优解。例如,在0-1背包问题中,贪心算法可能无法找到最优解。 归纳总结:贪心算法是一种在每一步选择中都采取当前最佳选择的算法,适用于许多优化问题。然而,它并不适用于所有问题,对于某些问题,贪心算法可能无法找到全局最优解。

正文

贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。

贪心算法的基本概念

贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。

贪心算法的特点

  1. 局部最优选择:每一步都选择当前状态下最优的操作。
  2. 无需回溯:一旦做出选择,便不会更改。
  3. 逐步构建解决方案:从一个初始解开始,通过局部最优选择逐步构建完整解决方案。

贪心算法的应用场景

1. 活动选择问题

在活动选择问题中,给定一组活动及其开始和结束时间,要求选择尽可能多的互不重叠的活动。

def activity_selection(activities):
    activities.sort(key=lambda x: x[1])  # 按结束时间排序
    selected_activities = [activities[0]]
    
    for i in range(1, len(activities)):
        if activities[i][0] >= selected_activities[-1][1]:
            selected_activities.append(activities[i])
    
    return selected_activities

activities = [(0, 6), (1, 4), (3, 5), (5, 7), (3, 9), (5, 9), (6, 10), (8, 11), (8, 12), (2, 14), (12, 16)]
selected = activity_selection(activities)
print("Selected activities:", selected)

 

2. 背包问题(分数背包)

在分数背包问题中,物品可以部分装入背包。目标是选择物品使得背包中的总价值最大。

def fractional_knapsack(items, capacity):
    items.sort(key=lambda x: x[1] / x[0], reverse=True)  # 按价值密度排序
    total_value = 0.0
    for weight, value in items:
        if capacity >= weight:
            total_value += value
            capacity -= weight
        else:
            total_value += value * (capacity / weight)
            break
    return total_value

items = [(10, 60), (20, 100), (30, 120)]  # (weight, value)
capacity = 50
max_value = fractional_knapsack(items, capacity)
print("Maximum value in knapsack:", max_value)

 

3. 最小生成树(Kruskal 算法)

在图论中,最小生成树是连接所有顶点的权重最小的树。Kruskal 算法通过贪心策略选择最小边来构建最小生成树。

class DisjointSet:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [0] * n

    def find(self, u):
        if self.parent[u] != u:
            self.parent[u] = self.find(self.parent[u])
        return self.parent[u]

    def union(self, u, v):
        root_u = self.find(u)
        root_v = self.find(v)
        if root_u != root_v:
            if self.rank[root_u] > self.rank[root_v]:
                self.parent[root_v] = root_u
            elif self.rank[root_u] < self.rank[root_v]:
                self.parent[root_u] = root_v
            else:
                self.parent[root_v] = root_u
                self.rank[root_u] += 1

def kruskal(n, edges):
    ds = DisjointSet(n)
    edges.sort(key=lambda x: x[2])
    mst = []
    for u, v, weight in edges:
        if ds.find(u) != ds.find(v):
            ds.union(u, v)
            mst.append((u, v, weight))
    return mst

edges = [(0, 1, 10), (0, 2, 6), (0, 3, 5), (1, 3, 15), (2, 3, 4)]
n = 4  # Number of vertices
mst = kruskal(n, edges)
print("Edges in MST:", mst)

 

贪心算法的局限性

虽然贪心算法在许多问题中表现出色,但它并不适用于所有问题。贪心算法不能保证所有情况下都能找到全局最优解。例如,在0-1背包问题中,贪心算法可能无法找到最优解。

 

与探索贪心算法:解决优化问题的高效策略相似的内容:

探索贪心算法:解决优化问题的高效策略

贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。 贪心算法的基本概念 贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望

[转帖]探索惊群 ①

https://wenfh2020.com/2021/09/25/thundering-herd/ 惊群比较抽象,类似于抢红包 😁。它多出现在高性能的多进程/多线程服务中,例如:nginx。 探索惊群 系列文章将深入 Linux (5.0.1) 内核,透过 多进程模型 去剖析惊群现象、惊群原理、惊

《探索Python Requests中的代理应用与实践》

本文详细介绍了如何在Python的requests库中使用高匿代理和隧道代理,以及如何部署一个简易的代理IP池来提高爬虫的稳定性和匿名性。同时,文章还深入探讨了野生代理的来源及其潜在的安全风险和使用限制。这篇文章适合希望进一步了解代理技术及其在网络爬虫开发中应用的读者。

Linux-Cgroup V2 初体验

本文主要记录 Linux Cgroup V2 版本基本使用操作,包括 cpu、memory 子系统演示。 1. 开启 Cgroup V2 版本检查 通过下面这条命令来查看当前系统使用的 Cgroups V1 还是 V2 stat -fc %T /sys/fs/cgroup/ 如果输出是cgroup2

MinIO使用记录

探索MinIO:高性能、分布式对象存储解决方案 注:本文除代码外多数为AI生成 最近因为有项目需要换成Amazon S3的云存储,所以把之前做过的minio部分做一个记录,后面也会把基于这版改造的S3方法发出来记录。 MinIO简介 MinIO是一款高性能、分布式对象存储服务器,设计用于在大规模环境

探索Semantic Kernel内置插件:深入了解HttpPlugin的应用

前言 上一章我们熟悉了Semantic Kernel中的内置插件和对ConversationSummaryPlugin插件进行了实战,本章我们讲解一下另一个常用的内置插件HttpPlugin的应用。 上一章对ConversationSummaryPlugin总结进行了调整之后,顺便给Semantic

基于 Cloudflare Workers 和 cloudflare-docker-proxy 搭建镜像加速服务

本文主要介绍了如何基于 Cloudflare Workers 和 cloudflare-docker-proxy 搭建 dockerhub、gcr、quay 等镜像加速服务。 最近,受限于各种情况,部分主流镜像站都关了,为了能够正常使用,建议自己搭建一个加速器。 写文之前,也已经部署好了一个,可以直

探索Semantic Kernel内置插件:深入了解ConversationSummaryPlugin的应用

前言 经过前几章的学习我们已经熟悉了Semantic Kernel 插件的概念,以及基于Prompts构造的Semantic Plugins和基于本地方法构建的Native Plugins。本章我们来讲解一下在Semantic Kernel 中内置的一些插件,让我们避免重复造轮子。 内置插件 Sem

探索Web Components

这篇文章介绍了Web Components技术,它允许开发者创建可复用、封装良好的自定义HTML元素,并直接在浏览器中运行,无需依赖外部库。通过组合HTML模板、Shadow DOM、自定义元素和HTML imports,Web Components增强了原生DOM的功能,提高了组件化开发的封装性和...

从零开始写 Docker(十八)---容器网络实现(下):为容器插上”网线“

本文为从零开始写 Docker 系列第十八篇,利用 linux 下的 Veth、Bridge、iptables 等等相关技术,构建容器网络模型,为容器插上”网线“。 完整代码见:https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实