算法金 | 来了,pandas 2.0

pandas · 浏览次数 : 6

小编点评

大侠幸会,感谢您的提问!关于您提到的Pandas库及其在新版本2.0中的改进,以下是归纳总结: **Pandas库简介** Pandas是一个广泛用于科学计算、金融分析、商业智能等领域的强大数据分析库。其核心数据结构DataFrame提供了丰富的数据清洗、变换、合并和聚合功能,成为数据科学家和分析师的必备工具。 **Pandas 2.0的新特性和改进** 1. **Arrow Array**: 引入Arrow Array技术,提升数据处理速度和效率,支持列式存储、跨平台兼容和高性能。 2. **统一的空值处理**: 使用pd.NA统一表示空值,简化空值处理逻辑。 3. **类型提示的改进**: 提供更好的类型提示支持,帮助开发者进行类型检查和自动补全。 4. **性能提升**: 对groupby和merge操作进行优化,提升大数据量处理的效率。 5. **可扩展的接口**: 增加了许多可扩展的接口,便于开发者扩展和定制Pandas的功能。 6. **自定义聚合函数**: 允许开发者自定义聚合函数,满足特定数据处理需求。 **Pandas 2.0的主要目标** 提升性能、增强数据处理能力、改进开发者体验,使Pandas在处理大规模数据和复杂数据分析任务时更加高效和便捷。 希望以上信息对您有所帮助!如有其他问题,请随时提问。

正文


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

今日 210+/10000,内含

Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单和高效。Pandas 的核心数据结构是 DataFrame,它可以方便地进行数据清洗、变换、合并和聚合操作,这使得 Pandas 成为数据科学家和分析师的必备工具。

  • 数据清洗:Pandas 提供了丰富的功能来处理缺失值、重复数据和数据类型转换。
  • 数据变换:可以轻松地对数据进行排序、过滤、分组和变换操作。
  • 数据合并:支持多种方式的数据合并和连接,如 merge、join 和 concat。
  • 数据聚合:通过 groupby 操作,可以对数据进行高效的聚合和汇总。

Pandas 的易用性和强大功能,使得它在数据分析中占据了重要地位。

Pandas 2.0 的发布背景和主要目标

随着数据量的不断增长和数据分析需求的增加,Pandas 的性能和功能也需要不断提升。Pandas 2.0 的发布背景主要包括以下几点:

  • 性能优化需求:大规模数据的处理对性能提出了更高的要求,Pandas 2.0 通过引入 Arrow Array 等技术,显著提升了数据处理的效率。
  • 统一的空值处理:在数据分析过程中,空值处理是一个常见且重要的问题。Pandas 2.0 引入了 pd.NA 统一表示空值,简化了空值处理的逻辑。
  • 类型提示的改进:为了提高代码的可读性和开发效率,Pandas 2.0 提供了更好的类型提示支持,帮助开发者进行类型检查和自动补全。
  • 扩展接口的需求:随着用户需求的多样化,Pandas 2.0 提供了更多的可扩展接口,使得开发者可以更方便地扩展和定制 Pandas 的功能。

Pandas 2.0 的主要目标是提升性能、增强数据处理能力和改进开发者体验,使得 Pandas 在处理大规模数据和复杂数据分析任务时更加高效和便捷。

Pandas 2.0 的新特性

2.1 Arrow Array

2.0 最大的亮点是增加了对pyarrow的支持,甚至被定义为一场革命(revolution)。

Apache Arrow 是一个用于内存中的跨平台数据表示格式,旨在提高数据处理的速度和效率。它通过定义一种列式内存格式,使数据在不同的计算引擎之间可以高效共享,减少数据的序列化和反序列化开销,从而提升性能。

Arrow 的主要特点包括:

  • 列式存储:数据按列存储,适合高效的压缩和向量化操作。
  • 跨平台兼容:支持多种编程语言和计算引擎,如 Python、R、Java、Spark 等。
  • 高性能:优化了内存访问模式,提高了数据处理的速度。

Arrow Array 的优点和使用场景

Pandas 2.0 引入了 Arrow Array 作为新的数据结构,带来了许多优点:

  • 高效的内存使用:Arrow Array 使用列式存储,减少了内存占用。
  • 快速的数据访问:优化的内存访问模式和向量化操作,提高了数据处理的速度。
  • 跨平台数据共享:可以在不同的计算引擎之间高效地共享数据,减少数据复制和转换的开销。

使用场景包括:

  • 大规模数据处理:在处理大量数据时,Arrow Array 提供了更高的性能和效率。
  • 数据分析和机器学习:需要高效的数据处理和内存管理的场景。
  • 跨平台数据处理:需要在不同计算引擎之间共享数据的应用。
import pandas as pd
import pyarrow as pa

# 使用 Arrow Array 创建 DataFrame
data = pa.table({'column1': [1, 2, 3], 'column2': ['a', 'b', 'c']})
df = pd.DataFrame(data)
print(df)

2.2 改进的空值处理

统一的空值表示 pd.NA

Pandas 2.0 引入了 pd.NA 来统一表示空值,解决了过去不同数据类型空值表示不一致的问题。pd.NA 是一个新的标识符,用于表示缺失值,无论数据类型如何。

空值处理的最佳实践

使用 pd.NA 进行空值处理的一些最佳实践包括:

  • 统一表示空值:使用 pd.NA 统一表示所有数据类型的空值,简化空值处理逻辑。
  • 检查空值:使用 isna() 和 notna() 函数检查空值。
  • 处理空值:使用 fillna() 函数填充空值,或使用 dropna() 函数删除包含空值的行或列。
df = pd.DataFrame({'column1': [1, pd.NA, 3], 'column2': ['a', 'b', pd.NA]})
print(df)

2.3 性能提升

groupby 和 merge 操作的优化

Pandas 2.0 对 groupby 和 merge 操作进行了显著的性能优化,提升了大数据量处理的效率。

# 示例:更快的 groupby 操作
df = pd.DataFrame({
    'group': ['A', 'B', 'A', 'B'],
    'value': [10, 20, 30, 40]
})
grouped = df.groupby('group').sum()
print(grouped)

实际应用中的性能对比

通过实际应用中的性能对比测试,可以看到 Pandas 2.0 在处理大数据集时的显著性能提升。例如,在合并两个大数据集时,Pandas 2.0 的速度明显快于之前的版本。

2.4 改进的类型提示

类型提示的重要性

类型提示是提高代码可读性和开发效率的重要工具。它可以帮助开发者进行类型检查、自动补全和错误检测,减少代码中的潜在错误。

Pandas 2.0 对类型提示的支持

Pandas 2.0 提供了更好的类型提示支持,帮助开发者在编写代码时进行类型检查和自动补全。

from typing import Optional
import pandas as pd

def process_data(df: pd.DataFrame) -> pd.DataFrame:
    # 进行数据处理
    return df

2.5 可扩展的接口

自定义聚合函数

Pandas 2.0 增加了许多可扩展的接口,使得开发者可以更容易地扩展 Pandas 的功能。例如,可以自定义聚合函数来进行数据聚合。

# 示例:自定义聚合函数
def custom_aggregation(series):
    return series.sum()

df = pd.DataFrame({
    'group': ['A', 'B', 'A', 'B'],
    'value': [10, 20, 30, 40]
})
grouped = df.groupby('group').agg(custom_aggregation)
print(grouped)

扩展方法的实现和应用

Pandas 2.0 允许开发者通过注册扩展方法来扩展 DataFrame 和 Series 的功能。

# 示例:自定义扩展方法
@pd.api.extensions.register_dataframe_accessor("custom")
class CustomAccessor:
    def __init__(self, pandas_obj):
        self._obj = pandas_obj

    def custom_method(self):
        return self._obj.mean()

df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]})
print(df.custom.custom_method())

[ 抱个拳,总个结 ]

Pandas 2.0 的这些新特性和改进,显著提升了数据处理的性能和灵活性,使得 Pandas 在处理大规模数据和复杂数据分析任务时更加高效和便捷。

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

与算法金 | 来了,pandas 2.0相似的内容:

算法金 | 来了,pandas 2.0

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 210+/10000,内含 Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单

算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化

​ 大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 215/10000 为模型找到最好的超参数是机器学习实践中最困难的部分之一 1. 超参数调优的基本概念 机器学习模型中的参数通常分为两类:模型参数和超参数。模型参数是模型通过训

算法金 | 再见!!!梯度下降(多图)

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 接前天 李沐:用随机梯度下降来优化人生! 今天把达叔 6 脉神剑给佩奇了,上 吴恩达:机器学习的六个核心算法! ——梯度下降 1、 目标 梯度下降优化算法的概述,目的在于帮助读者理解不同

算法金 | 不愧是腾讯,问基础巨细节 。。。

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 最近,有读者参加了腾讯算法岗位的面试,面试着重考察了基础知识,并且提问非常详细。 特别是关于AdaBoost算法的问题,面试官问了很多。 今天,我们就来和大家探讨一下 AdaBoost

算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中。它的核心思想是将复杂的决策过程分解成一系列简单的决策,通过不断地将数据集分割成更小的子集来进行预测。本文将带你详细了解决

CaiT:Facebook提出高性能深度ViT结构 | ICCV 2021

CaiT通过LayerScale层来保证深度ViT训练的稳定性,加上将特征学习和分类信息提取隔离的class-attention层达到了很不错的性能,值得看看 来源:晓飞的算法工程笔记 公众号 论文: Going deeper with Image Transformers 论文地址:https:/

DeepViT:字节提出深层ViT的训练策略 | 2021 arxiv

作者发现深层ViT出现的注意力崩溃问题,提出了新颖的Re-attention机制来解决,计算量和内存开销都很少,在增加ViT深度时能够保持性能不断提高 来源:晓飞的算法工程笔记 公众号 论文: DeepViT: Towards Deeper Vision Transformer 论文地址:https

ScaleDet:AWS 基于标签相似性提出可扩展的多数据集目标检测器 | CVPR 2023

论文提出了一种可扩展的多数据集目标检测器(ScaleDet),可通过增加训练数据集来扩大其跨数据集的泛化能力。与现有的主要依靠手动重新标记或复杂的优化来统一跨数据集标签的多数据集学习器不同,论文引入简单且可扩展的公式来为多数据集训练产生语义统一的标签空间,通过视觉文本对齐进行训练,能够学习跨数据集的

还在困惑需要多少数据吗?来看看这份估计指南 | CVPR 2022

论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论

定时任务原理方案综述 | 京东云技术团队

本文主要介绍目前存在的定时任务处理解决方案。业务系统中存在众多的任务需要定时或定期执行,并且针对不同的系统架构也需要提供不同的解决方案。京东内部也提供了众多定时任务中间件来支持,总结当前各种定时任务原理,从定时任务基础原理、单机定时任务(单线程、多线程)、分布式定时任务介绍目前主流的定时任务的基本原理组成、优缺点等。希望能帮助读者深入理解定时任务具体的算法和实现方案。