可视化学习:如何用WebGL绘制3D物体

webgl,3d · 浏览次数 : 13

小编点评

本文主要介绍了如何在WebGL中绘制3D物体,特别是正立方体的实现过程。文章首先提到了2D图形绘制的基础知识,然后详细讲解了如何将2D图形拓展为3D立方体,并展示了如何绘制出具有颜色和纹理的3D立方体。 1. **2D图形到3D立方体的拓展**:文章首先介绍了如何将二维的正方形拓展为三维的正立方体,包括将顶点从二维数组扩展到三维数组,以及在JavaScript中计算立方体的顶点数据和面信息。 2. **WebGL中的3D绘制**:接着,文章展示了如何在WebGL中使用着色器和顶点着色器来绘制3D立方体。特别指出了在绘制3D图形时需要开启深度检测和深度缓冲区的重要性,并介绍了如何使用WebGL库如gl-renderer简化这一过程。 3. **投影矩阵与模型矩阵**:文章还讨论了如何通过投影矩阵和模型矩阵来变换WebGL坐标系,从而实现立方体的旋转效果。通过不断更新旋转角度,可以在画面上观察到立方体的不同面。 总的来说,文章通过一个简单的正立方体示例,详细演示了如何在WebGL中绘制3D物体,包括顶点的扩展、颜色的定义、面的划分以及投影和模型矩阵的使用。

正文

在之前的文章中,我们使用WebGL绘制了很多二维的图形和图像,在学习2D绘图的时候,我们提过很多次关于GPU的高效渲染,但是2D图形的绘制只展示了WebGL部分的能力,WebGL更强大的地方在于,它可以绘制各种3D图形,而3D图形能够极大地增强可视化的表现能力。

相信很多小伙伴都对此有所耳闻,也有不少人学习WebGL,就是冲着它的3D绘图能力。

接下来,我就用一个简单的正立方体的例子来演示在WebGL中如何绘制3D物体。

从二维到三维

首先,我们先来绘制一个熟悉的2D图形,正方形。

// vertex
attribute vec2 a_vertexPosition;
attribute vec4 color;

varying vec4 vColor;

void main() {
  gl_PointSize = 1.0;
  vColor = color;
  gl_Position = vec4(a_vertexPosition, 1, 1);
}

// fragment
#ifdef GL_ES
precision highp float;
#endif

varying vec4 vColor;

void main() {
  gl_FragColor = vColor;
}
// ...
renderer.setMeshData([{
  positions: [
    [-0.5, -0.5],
    [-0.5, 0.5],
    [0.5, 0.5],
    [0.5, -0.5]
  ],
  attributes: {
    color: [
      [1, 0, 0, 1],
      [1, 0, 0, 1],
      [1, 0, 0, 1],
      [1, 0, 0, 1],
    ]
  },
  cells: [[0, 1, 2], [2, 0, 3]]
}]);
// ...

上述这些代码比较简单,我就不过多解释了。

在画布上我们看到,绘制了一个红色的正方形,它是一个平面图形。

接下来,我们就在这个图形的基础上,将它拓展为3D的正立方体。

要想把2维图形拓展为3维几何体,第一步就是要把顶点扩展到3维。也就是把vec2扩展为vec3。

// vertex
attribute vec3 a_vertexPosition;
attribute vec4 color;

varying vec4 vColor;

void main() {
  gl_PointSize = 1.0;
  vColor = color;
  gl_Position = vec4(a_vertexPosition, 1);
}

当然仅仅修改Shader是不够的,因为数据是从JavaScript传递过来的,所以我们需要在JavaScript中计算立方体的顶点数据,然后再传递给Shader。

一个立方体有8个顶点,能组成6个面。在WebGL中需要用12个三角形来绘制它。

如果6个面的属性相同的话,我们可以复用8个顶点来绘制;

但如果属性不完全相同,比如每个面要绘制成不同的颜色,或者添加不同的纹理图片,就得把每个面的顶点分开。这样的话,就需要24个顶点来分别处理6个面。

为了方便使用,我们可以定义一个JavaScript函数,用来生成立方体6个面的24个顶点,以及12个三角形的索引,并且定义每个面的颜色。

/**
 * 生成立方体6个面的24个顶点,12个三角形的索引,定义每个面的颜色信息
 * @param size
 * @param colors
 * @returns {{cells: *[], color: *[], positions: *[]}}
 */
export function cube(size = 1.0, colors = [[1, 0, 0, 1]]) {
    const h = 0.5 * size;
    const vertices = [
        [-h, -h, -h],
        [-h, h, -h],
        [h, h, -h],
        [h, -h, -h],
        [-h, -h, h],
        [-h, h, h],
        [h, h, h],
        [h, -h, h]
    ];

    const positions = [];
    const color = [];
    const cells = [];

    let colorIdx = 0;
    let cellsIdx = 0;
    const colorLen = colors.length;

    function quad(a, b, c, d) {
        [a, b, c, d].forEach(item => {
            positions.push(vertices[item]);
            color.push(colors[colorIdx % colorLen]);
        });
        cells.push(
            [0, 1, 2].map(i => i + cellsIdx),
            [0, 2, 3].map(i => i + cellsIdx)
        );
        colorIdx ++;
        cellsIdx += 4;
    }

    quad(1, 0, 3, 2); // 内
    quad(4, 5, 6, 7); // 外
    quad(2, 3, 7, 6); // 右
    quad(5, 4, 0, 1); // 左
    quad(3, 0, 4, 7); // 下
    quad(6, 5, 1, 2); // 上

    return {positions, color, cells};
}

现在我们就可以通过调用cube这个函数,构建出立方体的顶点信息。

const geometry = cube(1.0, [
    [1, 0, 0, 1],   // 红
    [0, 0.5, 0, 1], // 绿
    [0, 0, 1, 1]    // 蓝
]);

通过这段代码,我们就能创建出一个棱长为1的立方体,并且六个面的颜色分别是“红、绿、蓝、红、绿、蓝”。

接下来我们就要把这个立方体的顶点信息传递给Shader。

在传递数据之前,我们需要先了解一个知识点,是关于绘制3D图形与2D图形存在的一点不同,那就是绘制3D图形时,必须要开启深度检测和启用深度缓冲区。

在WebGL中,我们可以通过gl.enable(gl.DEPTH_TEST);这段代码来开启深度检测;在清空画布的时候,也要用gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);这段代码来同时清空颜色缓冲区和深度缓冲区。

启动和清空深度检测和深度缓冲区这两个步骤,非常重要。但是一般情况下,我们几乎不会用原生的方式来编写代码,所以了解一下即可。为了方便使用,在本文演示的例子中,我们还是直接使用gl-renderer这个库,它封装了深度检测,我们在使用时,在创建renderer的时候配置一个参数depth: true就可以了。

现在我们就把这个三维立方体用gl-renderer渲染出来。

// ...
renderer = new GlRenderer(glRef.value, {
  depth: true // 开启深度检测
});
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([{
  positions: geometry.positions,
  attributes: {
    color: geometry.color
  },
  cells: geometry.cells
}]);
renderer.render();

现在我们在画布上看到的是一个红色正方形,这是因为其他面被遮挡住了。

投影矩阵:变换WebGL坐标系

但是,等等,为什么我们看到的是红色的一面呢?按照我们所编写的代码,预期看到的应该是绿色的一面,也就是说我们预期Z轴是向外的,因为规范的直角坐标系是右手坐标系。所以按照现在的绘制结果,我们发现WebGL的坐标系其实是左手系的?

但一般来说,不管什么图形库或者图形框架,在绘图的时候,都会默认将坐标系从左手系转换为右手系,因为这更符合我们的使用习惯。所以这里,我们也去把WebGL的坐标系从左手系转换为右手系,简单来说,就是将Z轴坐标方向反转。关于坐标转换,可以通过齐次矩阵来完成。对坐标转换不熟悉的小伙伴,可以参考我之前的一篇关于仿射变换的文章。

将Z轴坐标方向反转,对应的齐次矩阵是这样的:

[
	1, 0, 0, 0,
	0, 1, 0, 0,
	0, 0, -1, 0,
	0, 0, 0, 1
]

这种转换坐标的齐次矩阵,也被称为投影矩阵,ProjectionMatrix。

现在我们修改一下顶点着色器,把这个投影矩阵添加进去。

// vertex
attribute vec3 a_vertexPosition; // 1:把顶点从vec2扩展到vec3
attribute vec4 color; // 四维向量

varying vec4 vColor;
uniform mat4 projectionMatrix; // 2:投影矩阵-变换坐标系

void main() {
  gl_PointSize = 1.0;
  vColor = color;
  gl_Position = projectionMatrix * vec4(a_vertexPosition, 1.0);
}

现在我们就能看到画布上显示的是绿色的正方形了。

模型矩阵:让立方体旋转起来

现在我们只能看到立方体的一个面,因为Z轴是垂直于屏幕的,这样子从视觉上看好像和2维图形没什么区别,没法让人很直观地联想、感受到这是一个三维的几何体,为了将其他的面露出来,我们可以去旋转立方体。

要想旋转立方体,我们同样可以通过矩阵运算来实现。这个矩阵叫做模型矩阵,ModelMatrix,它定义了被绘制的物体变换。

把模型矩阵加入到顶点着色器中,将它与投影矩阵相乘,再乘上齐次坐标,就得到最终的顶点坐标了。

attribute vec3 a_vertexPosition; // 1:把顶点从vec2扩展到vec3
attribute vec4 color; // 四维向量

varying vec4 vColor;
uniform mat4 projectionMatrix; // 2:投影矩阵-变换坐标系
uniform mat4 modelMatrix; // 3:模型矩阵-使几何体旋转

void main() {
  gl_PointSize = 1.0;
  vColor = color;
  gl_Position = projectionMatrix * modelMatrix * vec4(a_vertexPosition, 1.0);
}

现在我们定义一个JavaScript函数,用立方体沿x、y、z轴的旋转来生成模型矩阵。

以x、y、z三个方向的旋转得到三个齐次矩阵,然后将它们相乘,就能得到最终的模型矩阵。

import { multiply } from 'ogl/src/math/functions/Mat4Func.js';
// ...
export function fromRotation(rotationX, rotationY, rotationZ) {
    let c = Math.cos(rotationX);
    let s = Math.sin(rotationX);
    const rx = [
        1,  0, 0, 0, // 绕X轴旋转
        0,  c, s, 0,
        0, -s, c, 0,
        0,  0, 0, 1
    ];

    c = Math.cos(rotationY);
    s = Math.sin(rotationY);
    const ry = [
        c,  0, s, 0,
        0,  1, 0, 0, // 绕Y轴旋转
        -s, 0, c, 0,
        0,  0, 0, 1
    ];

    c = Math.cos(rotationZ);
    s = Math.sin(rotationZ);
    const rz = [
        c,  s, 0, 0,
        -s, c, 0, 0,
        0,  0, 1, 0, // 绕Z轴旋转
        0,  0, 0, 1
    ];

    const ret = [];
    multiply(ret, rx, ry);
    multiply(ret, ret, rz);
    return ret;
}

我们把模型矩阵传给顶点着色器,不断更新三个旋转角度,就能实现立方体旋转的效果。

// ...
let rotationX = 0;
let rotationY = 0;
let rotationZ = 0;
function update() {
  rotationX += 0.003;
  rotationY += 0.005;
  rotationZ += 0.007;
  renderer.uniforms.modelMatrix = fromRotation(rotationX, rotationY, rotationZ);
  requestAnimationFrame(update);
}
update();
// ...

现在我们就能在旋转中看到立方体的其他几个面了,能更直观地感受到这是一个三维物体。

总结

至此,我们就实现了正立方体的绘制。在3D物体的绘制中,正立方体属于是比较简单的一类,屏幕前的小伙伴们都可以来动手尝试下,感兴趣的小伙伴,还可以尝试去实现圆柱体、正四面体等等这些几何体的绘制。

参考代码

效果预览

与可视化学习:如何用WebGL绘制3D物体相似的内容:

可视化学习:如何用WebGL绘制3D物体

在学习2D绘图的时候,我们提过很多次关于GPU的高效渲染,但是2D图形的绘制只展示了WebGL部分的能力,WebGL更强大的地方在于,它可以绘制各种3D图形,而3D图形能够极大地增强可视化的表现能力。相信很多小伙伴都对此有所耳闻,也有不少人学习WebGL,就是冲着它的3D绘图能力。接下来,文本就用一...

机器学习策略篇:详解如何改善你的模型的表现(Improving your model performance)

如何改善模型的表现 学过正交化,如何设立开发集和测试集,用人类水平错误率来估计贝叶斯错误率以及如何估计可避免偏差和方差。现在把它们全部组合起来写成一套指导方针,如何提高学习算法性能的指导方针。 所以想要让一个监督学习算法达到实用,基本上希望或者假设可以完成两件事情。首先,的算法对训练集的拟合很好,这

Linux系统中如何查看磁盘情况

Linux不像windows系统那样方便的图形界面,特别是作为服务器使用的时候,只有命令行可以使用。 我有个云服务器平时用来做一些数据分享用的,最近想看看磁盘和其中文件的占用情况,于是搜索并学习了一些查看磁盘空间信息的命令,命令虽然简单,但对我自己来说还是有些新的东西值得记录。 1. df 首先,登

《爆肝整理》保姆级系列教程-玩转Charles抓包神器教程(9)-Charles如何修改请求参数和响应数据-上篇

1.简介 宏哥之前一直用postman调接口比较多(web端),也非常容易上手和操作。但有时候想要去修改APP的页面展示,造数据又会比较麻烦,你自己造相对还好些,要是让开发造,还得低眉顺眼的去求人。通过今天的学习后,再也不担心这些烦心事。我们可以通过工具Charles就可以实现。可以用以下三种方法修

《爆肝整理》保姆级系列教程-玩转Charles抓包神器教程(10)-Charles如何修改请求参数和响应数据-下篇

1.简介 宏哥之前一直用postman调接口比较多(web端),也非常容易上手和操作。但有时候想要去修改APP的页面展示,造数据又会比较麻烦,你自己造相对还好些,要是让开发造,还得低眉顺眼的去求人。通过今天的学习后,再也不担心这些烦心事。我们可以通过工具Charles就可以实现。可以用以下三种方法修

gRPC入门学习之旅(十)

gRPC是一个高性能、通用的开源远程过程调用(RPC)框架,基于底层HTTP/2协议标准和协议层Protobuf序列化协议开发, gRPC 客户端和服务端可以在多种环境中运行和交互。你可以用Java创建一个 gRPC 服务端,用 Go、Python、C# 来创建客户端。本系统文章详细描述了如何创建一...

gRPC入门学习之旅(九)

gRPC是一个高性能、通用的开源远程过程调用(RPC)框架,基于底层HTTP/2协议标准和协议层Protobuf序列化协议开发, gRPC 客户端和服务端可以在多种环境中运行和交互。你可以用Java创建一个 gRPC 服务端,用 Go、Python、C# 来创建客户端。本系统文章详细描述了如何创建一...

gRPC入门学习之旅(八)

gRPC是一个高性能、通用的开源远程过程调用(RPC)框架,基于底层HTTP/2协议标准和协议层Protobuf序列化协议开发, gRPC 客户端和服务端可以在多种环境中运行和交互。你可以用Java创建一个 gRPC 服务端,用 Go、Python、C# 来创建客户端。本系统文章详细描述了如何创建一...

可视化学习:如何生成简单动画让图形动起来

在可视化展现中,动画是强化数据表达,吸引用户的重要技术手段,本文将介绍动画的三种实现形式,以及如何具体地在HTML/CSS和Shader中去实现动画。

可视化学习:如何使用后期处理通道增强图像效果

GPU是并行渲染的,这样的渲染很高效。但是在实际需求中,有时我们计算片元色值时,需要依赖周围像素点或者某个其他位置像素点的颜色信息,这样的话想要一次性完成绘制就无法做到,需要对纹理进行二次加工处理。