ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别

onnx,runtime,resnet50v2 · 浏览次数 : 5

小编点评

本文介绍了ONNX Runtime和ResNet50v2的基本概念和应用。 ONNX Runtime是一个跨平台的推理和训练机器学习加速器,支持多种深度学习框架和经典机器学习库的模型。它与不同的硬件、驱动程序和操作系统兼容,并通过利用硬件加速器(如果适用)以及图形优化和转换来提供最佳性能。 ResNet50v2是一种深度卷积神经网络架构,由何凯明等人于2015年提出,解决了深度神经网络训练过程中的梯度消失和梯度爆炸问题。ResNet50v2广泛应用于各种计算机视觉任务,如图像分类、目标检测、图像分割等,在多个基准测试中表现出色。 本文通过一个示例代码展示了如何使用ONNX Runtime和ResNet50v2进行图像分类。首先,从GitHub上下载ResNet50 v2 ONNX模型和一张测试图片。然后,使用ImageSharp库读取图片、调整大小、预处理图像,并创建模型的输入。接着,创建推理会话并运行输入,得到输出结果。最后,对输出进行后处理以获得softmax向量,并提取前10个预测结果。通过这些步骤,可以实现对ONNX Runtime和ResNet50v2的基本应用。

正文

ONNX Runtime简介

ONNX Runtime 是一个跨平台的推理和训练机器学习加速器。ONNX 运行时推理可以实现更快的客户体验和更低的成本,支持来自深度学习框架(如 PyTorch 和 TensorFlow/Keras)以及经典机器学习库(如 scikit-learn、LightGBM、XGBoost 等)的模型。 ONNX 运行时与不同的硬件、驱动程序和操作系统兼容,并通过利用硬件加速器(如果适用)以及图形优化和转换来提供最佳性能。

image-20240702102515184

ResNet50v2简介

ResNet50v2 是一种深度卷积神经网络架构,是 ResNet(Residual Network,残差网络)系列的一部分。ResNet 是由何凯明等人在 2015 年提出的,它通过引入残差块(Residual Block)解决了深度神经网络训练过程中梯度消失和梯度爆炸的问题,使得构建非常深的网络成为可能。ResNet50v2 被广泛应用于各种计算机视觉任务,如图像分类、目标检测、图像分割等。由于其深度和强大的特征学习能力,ResNet50v2 在众多基准测试中表现出色,是许多研究和应用中的首选模型之一。

示例

这个示例代码在

https://github.com/microsoft/onnxruntime/tree/main/csharp/sample/Microsoft.ML.OnnxRuntime.ResNet50v2Sample

fork一份,克隆到本地,在本地打开这个项目,项目结构如下所示:

image-20240702104856596

依赖的包除了OnnxRuntime还有ImageSharp。

ImageSharp简介

ImageSharp 是一个新的、功能齐全、完全托管的跨平台 2D 图形库。ImageSharp 旨在简化图像处理,为您带来一个非常强大而又非常简单的 API。

ImageSharp 从头开始设计,具有灵活性和可扩展性。该库为常见的图像处理操作提供了 API 端点,并为开发其他操作提供了构建块。

ImageSharp 针对 .NET 8 构建,可用于设备、云和嵌入式/IoT 方案。

image-20240702110059615

下载 ResNet50 v2 ONNX 模型,下载地址在:

https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet50-v2-7.onnx

读取路径

首先,源代码中是通过程序参数读取模型的路径和要测试的图像的路径,也可以直接赋值:

// Read paths
//string modelFilePath = args[0];
//string imageFilePath = args[1];
string modelFilePath = @"你的路径\Microsoft.ML.OnnxRuntime.ResNet50v2Sample\resnet50-v2-7.onnx";
string imageFilePath = @"你的路径\Microsoft.ML.OnnxRuntime.ResNet50v2Sample\狮子.jpg";

读取图像

接下来,我们将使用跨平台图像库 ImageSharp 读取图像:

 // Read image
 using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath);

调整图像大小

接下来,我们将图像大小调整为模型期望的适当大小;224 像素 x 224 像素:

using Stream imageStream = new MemoryStream();
image.Mutate(x =>
{
    x.Resize(new ResizeOptions
    {
        Size = new Size(224, 224),
        Mode = ResizeMode.Crop
    });
});
image.Save(imageStream, format);

预处理图像

接下来,我们将根据模型的要求对图像进行预处理,具体要求见:

https://github.com/onnx/models/tree/main/validated/vision/classification/resnet#preprocessing

// We use DenseTensor for multi-dimensional access to populate the image data
var mean = new[] { 0.485f, 0.456f, 0.406f };
var stddev = new[] { 0.229f, 0.224f, 0.225f };
DenseTensor<float> processedImage = new(new[] { 1, 3, 224, 224 });
image.ProcessPixelRows(accessor =>
{
    for (int y = 0; y < accessor.Height; y++)
    {
        Span<Rgb24> pixelSpan = accessor.GetRowSpan(y);
        for (int x = 0; x < accessor.Width; x++)
        {
            processedImage[0, 0, y, x] = ((pixelSpan[x].R / 255f) - mean[0]) / stddev[0];
            processedImage[0, 1, y, x] = ((pixelSpan[x].G / 255f) - mean[1]) / stddev[1];
            processedImage[0, 2, y, x] = ((pixelSpan[x].B / 255f) - mean[2]) / stddev[2];
        }
    }
});

在这里,我们正在创建一个所需大小 (batch-size, channels, height, width) 的张量,访问像素值,对其进行预处理,最后将它们分配给适当指示的张量。

设置输入

接下来,我们将创建模型的输入:

using var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance,
    processedImage.Buffer, new long[] { 1, 3, 224, 224 });

var inputs = new Dictionary<string, OrtValue>
{
    { "data", inputOrtValue }
}

要检查 ONNX 模型的输入节点名称,您可以使用 Netron 可视化模型并查看输入/输出名称。在本例中,此模型具有 data 作为输入节点名称。

运行推理

接下来,我们将创建一个推理会话并通过它运行输入:

using var session = new InferenceSession(modelFilePath);
using var runOptions = new RunOptions();
using IDisposableReadOnlyCollection<OrtValue> results = session.Run(runOptions, inputs, session.OutputNames);

后处理输出

接下来,我们需要对输出进行后处理以获得 softmax 向量,因为这不是由模型本身处理的:

var output = results[0].GetTensorDataAsSpan<float>().ToArray();
float sum = output.Sum(x => (float)Math.Exp(x));
IEnumerable<float> softmax = output.Select(x => (float)Math.Exp(x) / sum);

其他型号可能会在输出之前应用 Softmax 节点,在这种情况下,您不需要此步骤。同样,您可以使用 Netron 查看模型输出。

提取前10个预测结果

IEnumerable<Prediction> top10 = softmax.Select((x, i) => new Prediction { Label = LabelMap.Labels[i], Confidence = x })
                   .OrderByDescending(x => x.Confidence)
                   .Take(10);

打印结果

Console.WriteLine("Top 10 predictions for ResNet50 v2...");
Console.WriteLine("--------------------------------------------------------------");
foreach (var t in top10)
{
    Console.WriteLine($"Label: {t.Label}, Confidence: {t.Confidence}");
}

本例的示例图片是一只狮子,如下所示:

image-20240702111735749

查看预测结果:

image-20240702111809588

在LabelMap类中可以查看该模型可以识别的物体:

image-20240702112145665

例如cock是公鸡的意思,我们可以现场找一张公鸡的图片,查看效果。

找到的一张公鸡图片如下所示:

image-20240702112326619

修改测试图片为这种图片,再次运行,结果如下所示:

image-20240702112443090

成功识别出了公鸡。

总结

以上就完成了ONNX Runtime的入门示例,可以根据兴趣与需求尝试使用其他的模型。

参考

1、Image recognition with ResNet50v2 in C# | onnxruntime

2、models/validated/vision/classification/resnet/model/resnet50-v2-7.onnx at main · onnx/models (github.com)

3、microsoft/onnxruntime: ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator (github.com)

4、SixLabors/ImageSharp: 📷 A modern, cross-platform, 2D Graphics library for .NET (github.com)

与ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别相似的内容:

ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别

ONNX Runtime简介 ONNX Runtime 是一个跨平台的推理和训练机器学习加速器。ONNX 运行时推理可以实现更快的客户体验和更低的成本,支持来自深度学习框架(如 PyTorch 和 TensorFlow/Keras)以及经典机器学习库(如 scikit-learn、LightGBM、

将PaddleOCR 转为 ONNX 运行

PaddleOCR 是目前最好的开源OCR框架, 但paddle框架的兼容性实在不怎么好, 部署的时候容易出现各种各样的问题. 如果能把PaddleOCR转成ONNX, 就可以跳过paddle框架坑的同时, 又可以白嫖PaddleOCR的强大检测性能. 本文会介绍一下, 如何把最新的PP_OCRv4

TensorRT c++部署onnx模型

在了解一些概念之前一直看不懂上交22年开源的TRTModule.cpp和.hpp,好在交爷写的足够模块化,可以配好环境开箱即用,移植很简单。最近稍微了解了神经网络的一些概念,又看了TensorRT的一些api,遂试着部署一下自己在MNIST手写数字数据集上训练的一个LeNet模型,识别率大概有98.

车牌识别控制台 可快速整合二次开发

完整车牌号识别程序,可以识别车牌和颜色,可以集成到项目中。可通过启动参数传入地址,通过控制台输出结果,通过捕获控制台输出流进行快速集成到项目中。 使用深度学习框架实现,识别效率快,识别率高。里面包含onnx模型文件,先识别车牌外型,再OCR提取车牌文字和颜色。 实现基本步骤 1. 数据标注,可以使用

使用Triton部署chatglm2-6b模型

一、技术介绍 NVIDIA Triton Inference Server是一个针对CPU和GPU进行优化的云端和推理的解决方案。 支持的模型类型包括TensorRT、TensorFlow、PyTorch(meta-llama/Llama-2-7b)、Python(chatglm)、ONNX Run