transformer原理

transformer · 浏览次数 : 0

小编点评

Transformer注意力架构原理 1. 输入层 - 使用embedding词嵌入向量将文本中的词汇转换为向量表示 - 在高维空间捕捉词汇间的关系,使得语义相近的词语对应的向量位置也更相近 - 每个词先通过词典转换成tokenId,再将tokenId转化为一个512纬的向量 - 位置编码将每个词的位置向量增加到文本嵌入层输出向量中,使输入层的向量具有位置信息 2. 编码层 - 注意力层 - 使用QKt矩阵运算获取注意力占比 - 将占比乘以V得到获得注意力的张量 - 自注意力机制 - Q=K=V,通过转置计算,使每个词都和其他所有词进行计算 - 多头注意力机制 - 将句子词向量切分成多个部分,分别进行注意力处理,最后拼接在一起 - 规范化层(Norm) - 对模型进行数值规范化,防止参数过大或过小,导致学习过程异常或收敛缓慢 3. 子层连接结构(残差连接) - Add表示残差连接 - Norm表示规范化层 - 用于解决神经网络深度过大导致的梯度消失、梯度爆炸等问题 4. 前馈全连接层(Feed Forward) - 由两个线性变化组成,中间有一个Relu激活函数 - 增加网络的深度,提升模型的能力 5. 编码器 - 由6个相同的Encoder Block层层堆叠组成(网络串行) 6. 解码层 - 第一个子层连接结构包括一个多头自注意力子层、规范化层和一个残差连接 - 第二个子层连接结构包括一个多头注意力子层、规范化层和一个残差连接 - 第三个子层连接结构包括一个前馈全连接子层、规范化层和一个残差连接 7. 输出层 - 全连接线性层+softmax激活函数获得最终结果 Transformer相较于传统RNN的优势: - 利用分布式GPU进行并行训练,提升模型训练效率 - Encoder部分可实现并行化,Decoder部分在训练阶段可并行化,预测阶段不可并行化 - 基于注意力的机制设计能够跨越较长文本,提取长文本特征

正文

 

Transformer注意力架构原理
输入层
embedding词嵌入向量
将文本中词汇的数字表示转变为向量表示,在这样的高维空间捕捉词汇间的关系
语义相近的词语对应的向量位置也更相近
每个词先通过词典转换成tokenId,在把tokenId转化为一个512纬的向量
位置编码
将每个词的位置向量(通过位置编码矩阵算出)增加到文本嵌入层输出向量中,这样输入层的向量就有了位置的信息
编码层
注意力层
注意力流程
Q通过K,V挖掘到KV中更重要的权重,把Q生成一个新的V
通过Q通过K在张量层面获取注意力(占比),在把占比乘以V就获得了新的张量作为获得注意力的张量
Q和K主要是为了获得占比
注意力机制公式
QKt是矩阵Q乘矩阵K的转置
处以√dk解决梯度消失的问题
softmax是计算出通过矩阵运算后的Q对于K的占比
最后乘以V是通过比例和值的乘运算获得最终的结果
自注意力
自注意机制的Q=K=V,通过转置计算,每个词都和其他所有词进行了计算
他的优点还在于,可以直接跨越一句话中不同距离的词,远距离学习到序列的只是依赖和语序结构
多头注意力机制
将句子词向量切分成多个部分每个部分分别进行注意力处理,最后再拼接到一起
多头可以在更细致的层面上提取不同的head的特征,提取特征的效果更好
规范化层norm
它是所有深层网络模型都需要的标准网络层
随着网络层数的增加,通过多层的计算后参数可能开始出现过大或过小的情况,这样可能会导致学习过程出现异常,模型可能收敛非常的慢. 因此都会在一定层数后接规范化层进行数值的规范化,使其特征数值在合理范围内
子层连接结构(残差连接)add
残差连接是2015年提出的论文解决神经网络深度过大导致的问题
神经网络模型在深度到达一定程度后,会造成梯度消失、梯度爆炸等问题
将浅层的输出和深层的输出求和,作为下一阶段的输入
通过残差连接这样一个简单的处理,成功将上百层的模型得以收敛,从而在分类任务中达到了更高的精度,在2016年resnet的改进中,模型的深度达到了1000层
Add & Norm
Add表示残差连接,Norm表示规范化层
对于每一个EncoderBlock,两个子层后面都有Add & Norm
对于每一个DecoderBlock,三个子层后后面都有Add & Norm
残差连接可以让信息传递的更深,增强了模型的拟合能力
规范化层,可以让模型减少参数过大过小的问题,防止模型收敛慢的问题
前馈全连接层Feed Forward
在Transformer中前馈全连接层就是具有两层线性层的全连接网络
考虑注意力机制可能对复杂过程的拟合程度不够, 通过增加两层网络来增强模型的能力
前馈全连接层由两个线性变化组成,中间有一个Relu激活函数
原始论文中的前馈全链接层输入和输出的纬度都是512,层内连接纬度是2048,均采用4倍的关系
前馈全链接层作用:单纯的多头注意力机制不足以提取到理想的特征,因此增加全链接层来提升网络的能力
编码器
Encoder部分是6个一模一样的Encoder Block层层堆叠在一起(网络串行)
解码层
第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接
多头自注意力层:需要做掩码,来遮掩未来的信息,提升模型的能力
对于生成类模型就是一个字一个字的崩出来,不能提前给模型透露未来的信息,如果透露了,他预测的能力会下降
第二个子层连接结构包括一个多头注意力子层和规范化层以及一个残差连接
多头注意力层:Q来自于Decoder端,KV来源于Encoder端
为什么要让原始文本(编码器输入)作为K V,翻译文本作为Q呢
训练过程中,要让目标文本在原始文本中提取到更重要的信息
预测过程中,更是要让生成文本在原始文本中提取到更重要的信息
谁更重要,谁信息量更大,谁就要在K V(通常K V是一样的)
这样设计的目的是为了让Decoder端的token能够给予Encoder端对应的token更多的关注
第三个子层连接结构包括一个前馈全连接子层和规范化层以及一个残差连接
输出层
全连接线性层+softmax激活函数获得最终的结果
Transformer相比于传统RNN的优势
Transformer能够利用分布式GPU进行并行训练,提升模型训练效率
Encoder并行化
Embedding层(输入)、前馈全链接层、规范化残差连接层,都可以进行并行化
从Embedding层到注意力层之间因为存在依赖关系,这两个阶段无法并行
在注意力层因为采用了矩阵运算,可以一次性计算所有主力张量的计算,数学上也是一种并行化的体现
Encoder在训练和预测阶段都可以实现并行化
Decoder并行化
Embedding层(输入)、前馈全链接层、规范化残差连接层,都可以进行并行化
在注意力层因为采用了矩阵运算,可以一次性计算所有主力张量的计算,数学上也是一种并行化的体现
Decoder在训练阶段可以并行化阶段
Decoder在预测阶段不可并行化阶段
在分析预测更长的文本时, 捕捉间隔较长的语义关联效果更好
基于注意力的机制设计本身就能跨越较长文本,提取长文本特征,并通过注意力权重提现到embedding中

与transformer原理相似的内容:

transformer原理

Transformer注意力架构原理 输入层 embedding词嵌入向量 将文本中词汇的数字表示转变为向量表示,在这样的高维空间捕捉词汇间的关系 语义相近的词语对应的向量位置也更相近 每个词先通过词典转换成tokenId,在把tokenId转化为一个512纬的向量 位置编码 将每个词的位置向量(通

解码Transformer:自注意力机制与编解码器机制详述与代码实现

> 本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 > 作者 TechLe

算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

1. RNN(Recurrent Neural Network) 时间轴 1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。 关键技术 循环结构 序列处理 长短时记忆网络(LSTM)和门控循环单元(GRU) 核心原理 RNN 通过循环结构让网络记住以前的输入

聊聊Transformer和GPT模型

本文基于《生成式人工智能》一书阅读摘要。感兴趣的可以去看看原文。 可以说,Transformer已经成为深度学习和深度神经网络技术进步的最亮眼成果之一。Transformer能够催生出像ChatGPT这样的最新人工智能应用成果。 ## 序列到序列(seq2seq) Transformer能实现的核心

终于搞懂了!原来 Vue 3 的 generate 是这样生成 render 函数的

前言 在之前的 面试官:来说说vue3是怎么处理内置的v-for、v-model等指令? 文章中讲了transform阶段处理完v-for、v-model等指令后,会生成一棵javascript AST抽象语法树。这篇文章我们来接着讲generate阶段是如何根据这棵javascript AST抽象

对Transformer的一些理解

在学习Transformer这个模型前对seq2seq架构有个了解时很有必要的 先上图 输入和输出 首先理解模型时第一眼应该理解输入和输出最开始我就非常纠结 有一个Inputs,一个Outputs(shift right)和一个Output Probabilities,首先需要借助这三个输入/输出来

算法金 | Transformer,一个神奇的算法模型!!

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。 今个儿我们将

万事通,专精部分领域的多功能 Transformer 智能体

介绍 我们很高兴分享“万事通”(Jack of All Trades,简称 JAT) 项目,该项目旨在朝着通用智能体的方向发展。该项目最初是作为对 Gato (Reed 等,2022 年) 工作的公开复现启动的,Gato 提出训练一种能够执行视觉与语言以及决策任务的 Transformer。于是我们

手动实现Transformer

Transformer和BERT可谓是LLM的基础模型,彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的,而BERT模型构建使用了Transformer的部分组件,如果理解了Transformer,则能很轻松地理解BERT。 一.Transformer模型架构 1.编码器 (

Swin Transformer:最佳论文,准确率和性能双佳的视觉Transformer | ICCV 2021

论文提出了经典的Vision Transormer模型Swin Transformer,能够构建层级特征提高任务准确率,而且其计算复杂度经过各种加速设计,能够与输入图片大小成线性关系。从实验结果来看,Swin Transormer在各视觉任务上都有很不错的准确率,而且性能也很高 来源:晓飞的算法工程