上上篇文章《5分钟理透LangChain的Chain》里用到了顺序链SequentialChain
,它可以将多个链按顺序串起来。本文介绍LangChain里的另外1个重要的链:路由链。
**路由链(RouterChain)**是由LLM根据输入的Prompt去选择具体的某个链。路由链中一般会存在多个Prompt,Prompt结合LLM决定下一步选择哪个链。
路由链一般涉及到2个核心类,LLMRouterChain
和MultiPromptChain
,一起看看官网介绍:
一般使用路由链时,有固定的几个步骤:
假设我们有一个常见的场景,根据用户的输入内容选择不同的处理路径,如果没有选到合适的链,则使用默认链。比如:根据用户的输入问题,选择不同的链去处理,如果没选到合适的,则走默认链。
具体代码如下:
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model_name="gpt-3.5-turbo",
openai_api_key="sk-xxxx",
openai_api_base="https://api.302.ai/v1",
)
from langchain.chains.router import LLMRouterChain, MultiPromptChain
from langchain.chains.router.llm_router import RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
from langchain.chains import LLMChain, ConversationChain
from langchain.prompts import PromptTemplate
# 准备2条目的链:一条物理链,一条数学链
# 1. 物理链
physics_template = """
你是一位物理学家,擅长回答物理相关的问题,当你不知道问题的答案时,你就回答不知道。
具体问题如下:
{input}
"""
physics_prompt = PromptTemplate.from_template(physics_template)
physics_chain = LLMChain(llm=model, prompt=physics_prompt)
# 2. 数学链
math_template = """
你是一个数学家,擅长回答数学相关的问题,当你不知道问题的答案时,你就回答不知道。
具体问题如下:
{input}
"""
math_prompt = PromptTemplate.from_template(math_template)
math_chain = LLMChain(llm=model, prompt=math_prompt)
# 3. 英语链
english_template = """
你是一个非常厉害的英语老师,擅长回答英语相关的问题,当你不知道问题的答案时,你就回答不知道。
具体问题如下:
{input}
"""
english_prompt = PromptTemplate.from_template(english_template)
english_chain = LLMChain(llm=model, prompt=english_prompt)
######### 所有可能的目的链
destination_chains = {}
destination_chains["physics"] = physics_chain
destination_chains["math"] = math_chain
destination_chains["english"] = english_chain
######### 默认链
default_chain = ConversationChain(llm=model, output_key="text")
# 让多路由模板 能找到合适的 提示词模板
destinations_template_str = """
physics:擅长回答物理问题
math:擅长回答数学问题
english:擅长回答英语问题
"""
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(
destinations=destinations_template_str
)
# 通过路由提示词模板,构建路由提示词
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
######### 路由链
router_chain = LLMRouterChain.from_llm(llm=model, prompt=router_prompt)
######### 最终的链
multi_prompt_chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
verbose=True,
)
# multi_prompt_chain.invoke({"input": "重力加速度是多少?"})
# multi_prompt_chain.invoke("y=x^2+2x+1的导数是多少?")
multi_prompt_chain.invoke("将以下英文翻译成中文,只输出中文翻译结果:\n The largest community building the future of LLM apps.")
# multi_prompt_chain.invoke("你是怎么理解java的面向对象的思想的?")
执行结果跟我们预想的一致,执行结果如下:
这篇博客主要介绍了LangChain中的**路由链(RouterChain)**的概念,它主要用在不确定性的场景下,根据提示词,选择具体的某个链去执行。还聊了它的使用场景和具体案例,希望对你有帮助!
=====>>>>>> 关于我 <<<<<<=====
本篇完结!欢迎点赞 关注 收藏!!!
路由链(RouterChain)是由LLM根据输入的Prompt去选择具体的某个链。路由链中一般会存在多个Prompt,Prompt结合LLM决定下一步选择哪个链。
在这篇文章中,我分享了如何将Coze平台成功集成到微信群聊机器人中的详细步骤。通过利用Coze的API功能,我们可以为微信群聊添加更多有趣和便利的功能,使得群聊体验更加丰富。