NumPy 差分、最小公倍数、最大公约数、三角函数详解

numpy · 浏览次数 : 0

小编点评

本文主要介绍了NumPy库中的差分离散差分、最小公倍数、最大公约数以及三角函数等基本概念和应用方法。 **差分离散差分**: 差分离散差分是指相邻元素之间的减法运算。NumPy提供了diff()函数来实现这一功能。例如,对于数组[1, 2, 3, 4],差分离散差分为[2-1, 3-2, 4-3]。 **最小公倍数**: 最小公倍数是指能被两个或多个整数整除的最小正整数。NumPy的lcm()函数可以计算两个数的最小公倍数。例如,4和6的最小公倍数为12。 **最大公约数**: 最大公约数是指两个或多个整数共有约数中最大的一个。NumPy的gcd()函数可以计算两个数的最大公约数。例如,6和9的最大公约数为3。 **三角函数**: NumPy提供的三角函数包括sin()、cos()和tan()等,它们可以接受弧度值并生成相应的正弦、余弦和正切值。此外,NumPy还提供了arcsin()、arccos()和arctan()等反函数,用于求解对应角度的正弦、余弦和正切值。 总的来说,NumPy库为数值计算提供了丰富的数学函数和操作,使得在处理复杂数学问题时更加便捷高效。

正文

NumPy 差分

离散差分意味着相邻元素之间的减法。

例如,对于 [1, 2, 3, 4],离散差分将是 [2-1, 3-2, 4-3] = [1, 1, 1]

要找到离散差分,使用 diff() 函数。

示例:

import numpy as np

arr = np.array([10, 15, 25, 5])

newarr = np.diff(arr)

print(newarr)

返回:[5 10 -20],因为 15-10=525-15=105-25=-20

我们可以通过给出参数 n 来重复执行此操作。

例如,对于 [1, 2, 3, 4]n = 2 时,离散差分将是 [2-1, 3-2, 4-3] = [1, 1, 1],然后,由于 n=2,我们将再次执行一次,得到新结果:[1-1, 1-1] = [0, 0]

示例

对以下数组进行两次离散差分:

import numpy as np

arr = np.array([10, 15, 25, 5])

newarr = np.diff(arr, n=2)

print(newarr)

返回:[5 -30],因为:15-10=525-15=105-25=-20,而 10-5=5-20-10=-30

NumPy 最小公倍数(LCM)

最小公倍数是两个数的最小公倍数。

示例:

import numpy as np

num1 = 4
num2 = 6

x = np.lcm(num1, num2)

print(x)

返回:12,因为这是这两个数的最小公倍数(4*3=126*2=12)。

在数组中找到最小公倍数

要找到数组中所有值的最小公倍数,可以使用 reduce() 方法。

reduce() 方法将对每个元素使用 ufunc,在本例中是 lcm() 函数,并将数组减少一个维度。

示例

找到以下数组值的最小公倍数:

import numpy as np

arr = np.array([3, 6, 9])

x = np.lcm.reduce(arr)

print(x)

返回:18,因为这是所有三个数的最小公倍数(3*6=186*3=189*2=18)。

示例

找到包含从 110 的所有整数的数组中所有值的最小公倍数:

import numpy as np

arr = np.arange(1, 11)

x = np.lcm.reduce(arr)

print(x)

NumPy 最大公约数(GCD)

最大公约数(GCD,也称为 HCF,即最高公因数)是两个数的最大公共因数。

示例:

import numpy as np

num1 = 6
num2 = 9

x = np.gcd(num1, num2)

print(x)

返回:3,因为这是两个数都可以被整除的最大数(6/3=29/3=3)。

在数组中找到最大公约数

要找到数组中所有值的最大公约数,可以使用 reduce() 方法。

reduce() 方法将对每个元素使用 ufunc,在本例中是 gcd() 函数,并将数组减少一个维度。

示例

找到以下数组中所有数字的最大公约数:

import numpy as np

arr = np.array([20, 8, 32, 36, 16])

x = np.gcd.reduce(arr)

print(x)

返回:4,因为这是所有值都可以被整除的最大数。

NumPy 三角函数

NumPy 提供了 sin()cos()tan() 等 ufunc,它们接受弧度值并生成相应的正弦、余弦和正切值。

示例:

import numpy as np

x = np.sin(np.pi/2)

print(x)

示例

找到数组 arr 中所有值的正弦值:

import numpy as np

arr = np.array([np.pi/2, np.pi/3, np.pi/4, np.pi/5])

x = np.sin(arr)

print(x)

将角度转换为弧度

默认情况下,所有的三角函数都接受弧度作为参数,但是在 NumPy 中我们也可以将弧度和角度相互转换。

注意:弧度值是 pi/180 乘以角度值。

示例

将以下数组 arr 中的所有值转换为弧度:

import numpy as np

arr = np.array([90, 180, 270, 360])

x = np.deg2rad(arr)

print(x)

将弧度转换为角度

示例

将以下数组 arr 中的所有值转换为角度:

import numpy as np

arr = np.array([np.pi/2, np.pi, 1.5*np.pi, 2*np.pi])

x = np.rad2deg(arr)

print(x)

查找角度

从正弦、余弦、正切值查找角度。例如,sin、cos 和 tan 的反函数(arcsin、arccos、arctan)。

NumPy 提供了 arcsin()arccos()arctan() 等 ufunc,它们给出相应 sin、cos 和 tan 值的弧度值。

示例

找到 1.0 的角度:

import numpy as np

x = np.arcsin(1.0)

print(x)

数组中每个值的角度

示例

找到数组中所有正弦值的角度:

import numpy as np

arr = np.array([1, -1, 0.1])

x = np.arcsin(arr)

print(x)

斜边

在 NumPy 中使用勾股定理找到斜边。

NumPy 提供了 hypot() 函数,它接受底边和垂直边的值,并根据勾股定理生成斜边。

示例

找到底边为 4,垂直边为 3 的斜边:

import numpy as np

base = 3
perp = 4

x = np.hypot(base, perp)

print(x)

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

与NumPy 差分、最小公倍数、最大公约数、三角函数详解相似的内容:

NumPy 差分、最小公倍数、最大公约数、三角函数详解

NumPy 助你处理数学问题:计算序列的差分用`np.diff()`,示例返回`[5, 10, -20]`;找最小公倍数(LCM)用`np.lcm()`,数组示例返回`18`;最大公约数(GCD)用`np.gcd.reduce()`,数组示例返回`4`;三角函数如`np.sin()`,`np.deg...

NumPy 舍入小数、对数、求和和乘积运算详解

NumPy 提供五种舍入小数的方法:`trunc()`, `fix()`, `around()`, `floor()`, `ceil()`。此外,它还支持对数运算,如 `log2()`, `log10()`, `log()`,以及自定义底数的对数。NumPy 的 `sum()` 和 `prod()`...

NumPy 简单算术:加减乘除及其他运算

NumPy 中的简单算术运算可以通过 `add`, `subtract`, `multiply`, `divide`, `power`, `mod`, `remainder` 等函数实现,这些函数支持条件运算,并接受 `where` 参数。例如,`add()` 实现加法,`subtract()` 表...

机器学习算法(一):1. numpy从零实现线性回归

系列文章目录 机器学习算法(一):1. numpy从零实现线性回归 机器学习算法(一):2. 线性回归之多项式回归(特征选取) @目录系列文章目录前言一、理论介绍二、代码实现1、导入库2、准备数据集3、定义预测函数(predict)4 代价(损失)函数5 计算参数梯度6 批量梯度下降7 训练8 可视

数据分析---numpy模块

前戏 NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。 快捷键的使用: 添加cell:a或者b 删除:x 修改cell的模式: m:修改成markdown模式

NumPy 数组排序、过滤与随机数生成详解

本文介绍了NumPy中的数组排序和过滤功能。`np.sort()`函数用于对数组进行升序排序,对二维数组则按行排序。示例展示了如何对一维和二维数组排序。此外,还讲解了使用布尔索引来过滤数组,以及直接在条件中操作数组以创建过滤后的数组。最后,介绍了NumPy的随机数生成,包括整数、浮点数及特定分布的随...

NumPy 分割与搜索数组详解

NumPy 分割数组 NumPy 提供了 np.array_split() 函数来分割数组,将一个数组拆分成多个较小的子数组。 基本用法 语法: np.array_split(array, indices_or_sections, axis=None) array: 要分割的 NumPy 数组。 i

NumPy 数组迭代与合并详解

NumPy 数组迭代 NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。 基本迭代 我们可以使用 Python 的基本 for 循环来迭代 NumPy 数组。 一维数组迭代: import numpy as np arr = np.array([1, 2, 3,

NumPy 数组复制与视图详解

NumPy 数组的复制与视图 NumPy 数组的复制和视图是两种不同的方式来创建新数组,它们之间存在着重要的区别。 复制 复制 会创建一个包含原始数组相同元素的新数组,但这两个数组拥有独立的内存空间。这意味着对复制进行的任何更改都不会影响原始数组,反之亦然。 创建副本可以使用以下方法: arr.co

NumPy 数组切片及数据类型介绍

NumPy 数组切片 NumPy 数组切片用于从数组中提取子集。它类似于 Python 中的列表切片,但支持多维数组。 一维数组切片 要从一维数组中提取子集,可以使用方括号 [] 并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号 : 分隔。 语法: arr[start:end:step]