LLM应用实战:当图谱问答(KBQA)集成大模型(三)

llm,kbqa · 浏览次数 : 0

小编点评

本文主要介绍了一种针对KBQA(知识图谱问答)领域的大模型优化方案,重点关注响应时间的降低和多轮对话效果的优化。首先,作者回顾了前文中的LLM项目,主要通过大模型替代传统KBQA的功能组件,实现知识图谱问答。然后,作者总结了项目中最主要的两个优化点:响应时间优化和多轮对话效果优化,并详细介绍了各种优化方案的实施方法和效果。 1. **背景与目标**:作者表示最近工作繁忙,专注于多模态大模型领域的研究。本次更新的目的是积极响应图谱问答集成LLM项目的反馈问题,并对KBQA集成LLM的知识点进行优化总结。 2. **响应时间优化**:文章指出项目的验收标准是流式首字的响应时间在3秒内,但当前服务的平均响应时间为5秒至7秒,不符合项目验收标准。为此,作者提出了改进方案,包括prompt长度缩减、LLM输出结果简化、使用量化版LLM。实验结果表明,这些优化措施能够显著提高响应时间,满足项目验收标准。 3. **多轮对话效果优化**:针对多轮对话中的指代消解问题,作者提出了一种通过引入历史参考内容和当前问题与历史问题进行关联性分析的策略。实验结果表明,这种优化方法能够有效地提高多轮对话中的指代消解准确性。 4. **优化方案与总结**:最后,作者归纳总结了本文的主要内容,并提供了一套具体的优化方案和prompt,供读者在其他KBQA构建中进行尝试。同时,作者也提到了未来可能需要验证的问题,如prompt输入长度缩减、LLM输出结果长度缩减等因素可能对问答准确性产生的影响。 总的来说,本文通过详细分析KBQA领域的问题,并提出了一系列针对性的优化措施,包括响应时间和多轮对话效果的优化,取得了显著的成果。这些优化方案不仅对于当前项目具有重要的指导意义,也为未来KBQA领域的发展和应用提供了有益的参考。

正文

1. 背景

最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中...

本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客官可以翻翻之前的文章《LLM应用实战:当KBQA集成LLM》、《LLM应用实战:当KBQA集成LLM()》。

针对KBQA集成LLM项目,该系列文章主要是通过大模型来代替传统KBQA的相关功能组件,实现知识图谱问答,以及如何针对问答效果、多轮对话、响应时间等优化工作总结,是妥妥的干货篇,感兴趣的客官可以持续关注!

本次的主要优化点在于如下:

1. 响应时间

项目的验收标准是流式首字的响应时间在3s内,而当前服务的平均响应时间在5s-7s之间,不符合项目验收标准。

2. 多轮对话

由于当前多轮对话中的指代消解、默认实体或概念对齐均由大模型处理,由于基座大模型的不稳定性,存在偶现的多轮对话中的对象指代错误的情况

2. 响应时间优化

2.1 响应时间统计

基于前文展示的流程图,针对每个节点进行单次响应时间的统计,结果如下:

模块

耗时

图谱初始化

558ms(仅第一次会耗时)

候选schema召回

49ms

对齐prompt调用LLM完整响应时间

2800ms

对齐校准

15ms

对话prompt调用LLM首字响应时间

1800ms

 

可以发现两次调用大模型的响应时间耗时基本都在3s,因此重点对LLM调用环节进行优化。

优化方案包括三方面:prompt长度缩减、LLM输出结果简化、使用量化版LLM

2.2 prompt长度缩减

经过分析比对,不同文本长度,LLM的首字响应时间差别较大,尤其是增加安全机制的非公开LLM

原因也众所周知,LLM推理过程是基于前文预测下一个token,纵然增加了KV缓存机制、FA2机制,较长的prompt首字响应时间必然大于较短prompt,因此可以针对prompt长度进行缩减,以提高LLM首字响应时间。

由于项目中对齐prompt的平均字符长度为5000字左右,且需要等待LLM全部输出结果后,方才进行后续流程,因此本次优化重点优化对齐prompt中的示例部分。

提供的fewshot示例大概40+条,且大部分示例和用户当前问题不相关,因此将fewshot示例向量化进行存储,当用户提问时,基于语义相似度将问题与fewshot示例进行pk,筛选出语义相似的10条示例作为对齐prompt中的fewshot,以达到缩减prompt长度的效果。

实验结果表明,将40fewshot减小为10条,响应时间提高0.8s左右

对话prompt没有进行优化,因为对话prompt不需要等待全部结果输出,只需要首字响应并流式输出即可。

2.3 LLM输出结果简化

LLM输出结果越长,输出全部结果的时间就越长,所以针对对齐prompt的输出长度也做了一些优化,虽然响应时间提升不高

原始对齐prompt调用LLM的输出如下:

(属性-等于-体重)(属性值-等于-最大);(属性-等于-食性)(属性值-等于-肉食性);(概念-等于-恐龙)

主要优化点在于:

1) 属性、实体、概念、属性值分别用P, E, C, V表示

2) 属性、实体、概念中三元组删除“等于”

3) 属性值中的等于用eq代替

4) 且、或分别用&, |表示

因此优化后的LLM输出结果如下:

(P-体重)&(V-eq-最大);(P-食性)&(V-eq-肉食性);(C-恐龙)

2.4 大模型量化

先前使用的非量化版的LLM,更换了INT 8量化版的LLM后,LLM的首响及完整响应时间有了质的提升。

其中对齐prompt完整输出结果由先前的2.8s提升至1.6s,对话prompt的首响时间由1.8s提升至0.6s

由于使用的是私有化部署的量化版,中间没有安全审核机制,再加上量化的有效推理,所以响应时间提升非常明显。

2.5 思考

经过上述三方面的优化后,平均响应时间2.1s-2.9s之间,满足项目的验收标准但引入的问题还是需要进一步验证。如prompt输入长度缩减、LLM输出结果长度缩减、切换量化版LLM是否引入问答准确性的降低呢?

针对该问题,基于先前整理的测试集,进行测试验证,准确率层面效果基本保持不变,说明以上优化方法有效!

3. 多轮对话效果优化

3.1 示例

怎么辨认慈母龙

它有啥能力

分布在那些地方?

海百合是百合么?

那它分布在哪里?

上述示例为多轮问答,在测试验证中,运行10次该多轮问答,其中会出现2那它分布在哪里?中的”它”指代到了”慈母龙”,而非正确的”海百合”,因为对齐prompt调用LLM后,输出了“(E-慈母龙)&(P-分布区域)”原因当然可以归咎于LLM的基础能力不足,但如何进行优化呢?

尝试了两种方案:a. 对齐prompt中增加历史参考内容;b. 当前问题与历史问题通过LLM比较,判定是否二者存在关联性。

3.2 历史参考内容

想法也非常简单,LLM直接针对历史的问题和答案进行总结,大概率会存在指代不清的问题,那么如果将历史的问题以及对应指代的实体或概念作为参考项,提供给LLM,那么LLM就多了一层参考,进而可以提高指代的准确性。

历史参考内容引入到对齐prompt部分内容如下:

第一个问题prompt, 历史输入为空,ref也为空

历史输入:

```

 

```

 

现在回答:

in: 怎么辨认慈母龙

 

out:

第二个问题prompt, 存在第1个问题及实体,当前问题的参考ref”慈母龙”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

```

 

现在回答:

in: 它有啥能力

ref: 慈母龙

out:

第三个问题prompt, 存在第1,2个问题及实体,当前问题的参考ref仍为”慈母龙”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

```

 

现在回答:

in: 分布在那些地方?

ref: 慈母龙

out:

第四个问题prompt, 存在第1,2,3个问题及实体,当前问题的参考ref也为”慈母龙”,即将之前的实体继续带入下一轮,大模型会根据当前问题,结合历史输入,进行实体抽取

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

in: 分布在那些地方?

ref: 慈母龙

```

 

现在回答:

in: 海百合是百合么?

ref: 慈母龙

out:

第五个问题prompt, 存在前四个问题及实体,ref当前为”海百合”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

in: 分布在那些地方?

ref: 慈母龙

in: 海百合是百合么?

ref: 海百合

```

 

现在回答:

in: 那它分布在哪里?

ref: 海百合

out:

这样即使是20轮以上的问答,LLM也能根据当前ref进行分析比较,保障当前问题描述的实体或概念

3.3 当前问题与历史问题关联性分析

理论上通过引入历史参考内容可以有效解决多轮对话中的指代消解问题,但由于LLM本身泛化能力问题,偶尔会出现ref引入错误的情况,例如,上述第二个问题,当前的ref引入为”海百合、慈母龙”,如何针对该问题进行优化呢?

原因可能是历史问题存在多个时,大模型偶尔无法按照指令针对历史问题进行语义分析,因此可以将当前问题与历史中最后一次出现实体或概念的问题进行关联性分析,比较是否描述的是同一个对象,进而基于分析结果,将ref中的内容进一步约束。即,如果当前问题与历史最后一次出现的问题的实体相关时,则引入历史的实体,否则不引入历史实体

举个例子说明下,”怎么辨认慈母龙”和”分布在那些地方?”存在关联性(默认第二个问题不存在实体,自动引用前一个问题的实体),则ref”慈母龙”,而”怎么辨认慈母龙”和”海百合是百合么?”不相关,则ref中只保留”海百合”。

关联性分析也是通过prompt调用LLM实现,对应的prompt内容如下:

你是一个关于自然博物馆的多轮对话的识别器,主要用于识别当前问题与历史问题是否在讨论同一个或一组对象,以便进一步区分多轮对话的边界,请参考如下要求和示例进行输出:

1. 输出只能包含"", "",禁止输出其他内容;

2. 一定要结合历史的问题,与当前问题进行语义层面分析与比较,判断当前问题是否有历史的问题是否在讨论同一个或一组对象,如存在指代消解等;

3. 如果输出为"",表示当前问题与历史问题存在关联性,则表示二者共同;

4. "q"表示问题,"a"表示输出;

5. 如果当前问题存在"""它们",表示存在指代情况,则输出"";

6. 如果当前问题没有明确任何询问的对象,表示默认使用历史讨论的对象,输出"";

7. 如果当前问题存在具体的询问对象,且与历史问题不存在指代问题,则输出"";

 

 

示例如下:

```

示例

q: 怎么辨认慈母龙

q: 有啥能力?

a:

示例

q: 怎么辨认慈母龙

q: 分布在那些地方?

a:

示例

q: 怎么辨认慈母龙

q: 海百合是百合么?

a:

示例

q: 海百合是百合么?

q: 那它分布在哪里?

a:

示例

q: 霸王龙的体长?

q: 梁龙有何生活习性?

a:

```

 

现在请根据上述要求及示例,针对以下问题进行关联性分析:

q: {}

q: {}

a:

 

4. 总结

一句话足矣~

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt

读者可以按照这套方案进行其他KBQA的构建尝试,如有问题,可私信沟通。

 

 

与LLM应用实战:当图谱问答(KBQA)集成大模型(三)相似的内容:

LLM应用实战:当图谱问答(KBQA)集成大模型(三)

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。

LLM应用实战:当KBQA集成LLM(二)

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到图谱存储至Es,且支持Es的向量检索,还有解决了一部分基于属性值倒查实体的场景,且效果相对提升。

LLM实战:当网页爬虫集成gpt3.5

本文主要是通过Scrapegraph-ai集成gpt3.5实现一个简单的网页爬取并解析的demo应用,其中涉及到gpt3.5免费申请,Scrapegraph-ai底层原理简介,demo应用源码等。

LLM 大模型学习必知必会系列(十):基于AgentFabric实现交互式智能体应用,Agent实战

LLM 大模型学习必知必会系列(十):基于AgentFabric实现交互式智能体应用,Agent实战 0.前言 **Modelscope **是一个交互式智能体应用基于ModelScope-Agent,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。AgentFabric围绕可

深入探讨Function Calling:在Semantic Kernel中的应用实践

引言 上一章我们熟悉了 OpenAI 的 function calling 的执行原理,这一章节我们讲解一下 function calling 在 Semantic Kernel 的应用。 在OpenAIPromptExecutionSettings跟 LLM 交互过程中,ToolCallBehav

Langchain-Chatchat项目:1-整体介绍

基于Langchain与ChatGLM等语言模型的本地知识库问答应用实现。项目中默认LLM模型改为THUDM/chatglm2-6b[2],默认Embedding模型改为moka-ai/m3e-base[3]。 一.项目介绍 1.实现原理 本项目实现原理如下图所示,过程包括加载文件->读取文本->文

AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望

AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望 1. AI Agent(LLM Agent)介绍 1.1. 术语 Agent:“代理” 通常是指有意行动的表现。在哲学领域,Agent 可以是人、动物,甚至是具有自主性的概念或实体。 AI Agent

Llama2-Chinese项目:7-外延能力LangChain集成

本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。 1.调用Llama2类 针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下

Langchain-Chatchat项目:3-Langchain计算器工具Agent思路和实现

本文主要讨论Langchain-Chatchat项目中自定义Agent问答的思路和实现。以"计算器工具"为例,简单理解就是通过LLM识别应该使用的工具类型,然后交给相应的工具(也是LLM模型)来解决问题。一个LLM模型可以充当不同的角色,要把结构化的Prompt模板写好,充分利用LLM的Zero/O

构建RAG应用-day05: 如何评估 LLM 应用 评估并优化生成部分 评估并优化检索部分

评估 LLM 应用 1.一般评估思路 首先,你会在一到三个样本的小样本中调整 Prompt ,尝试使其在这些样本上起效。 随后,当你对系统进行进一步测试时,可能会遇到一些棘手的例子,这些例子无法通过 Prompt 或者算法解决。 最终,你会将足够多的这些例子添加到你逐步扩大的开发集中,以至于手动运行