AlexNet论文解读

alexnet · 浏览次数 : 0

小编点评

本文介绍了深度学习中的AlexNet网络及其在ImageNet竞赛中的应用。文章首先回顾了AlexNet的重要性和其在当时的影响,然后详细讲解了其网络结构和工作原理。接着,文章详细描述了使用AlexNet进行猫狗分类任务的实验过程,包括数据集的准备、模型的搭建和训练、测试以及结果分析。 1. **AlexNet的重要性**:文章首先提到了AlexNet作为深度学习里程碑式的研究,对后续研究产生了深远的影响。AlexKrizhevsky在2012年使用两块GTX 580 GPU实现了AlexNet,并在ImageNet竞赛中取得冠军。 - AlexNet的成功奠定了深度学习的基础。 - AlexNet在ImageNet竞赛中的胜利为GPU公司NVIDIA的市值增长做出了贡献。 2. **网络结构**:文章详细描述了AlexNet的8层结构,包括5个卷积层和3个全连接层。 - 第一层至第五层为卷积层,每层都有不同的卷积核大小和步长。 - 第六至八层为全连接层,每层的神经元个数相同。 - AlexNet采用了局部响应归一化和最大池化操作。 3. **数据集与分类任务**:文章使用了猫狗的图片作为数据集,进行了模型的搭建、训练、测试和验证。 - 数据集中共有猫和狗的图片各12500张。 - 使用AlexNet模型对猫和狗进行分类,共有一个类别。 - 训练集、验证集和测试集的数据分布情况也被详细介绍。 4. **模型训练与测试**:文章展示了如何搭建模型、导入数据、定义损失函数和优化器,并且通过训练过程来优化模型的性能。 - 文章给出了详细的训练代码,并记录了不同阶段的损失和精度变化。 - 文章还对比了不同epoch后的模型在验证集上的表现。 总的来说,文章通过对AlexNet网络的深入分析和实验过程,展示了如何使用深度学习技术来解决实际的图像分类问题,并提供了实验结果和结果分析,为读者提供了宝贵的实践经验。

正文

前言

  作为深度学习的开山之作AlexNet,确实给后来的研究者们很大的启发,使用神经网络来做具体的任务,如分类任务、回归(预测)任务等,尽管AlexNet在今天看来已经有很多神经网络超越了它,但是它依然是重要的。AlexNet的作者Alex Krizhevsky首次在两块GTX 580 GPU上做神经网络,并且在2012年ImageNet竞赛中取得了冠军,这是一件非常有意义的事情,为后来深度学习的兴起奠定了重要基础,包括现在的显卡公司NVIDIA的市值超越苹果,都有深度学习的一份功劳。

  下面讲解一下AlexNet的网络结构和论文复现。实验为使用AlexNet网络做猫狗分类任务;实验经过了模型搭建,训练,测试以及结果分析。

1.网络结构

  AlexNet的网络一共有8层,前5层是卷积层,剩下3层是全连接层,具体如下所示:

  第一层:卷积层1,输入为 224 × 224 × 3 的图像,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11 × 11 × 3;stride = 4, stride表示的是步长, pad = 0, 表示不扩充边缘;卷积后的图形大小为:wide = (224 + 2 * padding - kernel_size) / stride + 1 = 54,height = (224 + 2 * padding - kernel_size) / stride + 1 = 54,dimention = 96,然后进行 (Local Response Normalized), 后面跟着池化pool_size = (3, 3), stride = 2, pad = 0 最终获得第一层卷积的feature map;

  第二层:卷积层2, 输入为上一层卷积的feature map, 卷积的个数为256个,论文中的两个GPU分别有128个卷积核。卷积核的大小为:5 × 5 × 48;pad = 2, stride = 1; 然后做 LRN,最后 max_pooling, pool_size = (3, 3), stride = 2;

  第三层:卷积3, 输入为第二层的输出,卷积核个数为384,kernel_size = (3 × 3 × 128),padding = 1,第三层没有做LRN和Pool;

  第四层:卷积4, 输入为第三层的输出,卷积核个数为384,kernel_size = (3 × 3 × 192),padding = 1,和第三层一样,没有LRN和Pool;

  第五层:卷积5, 输入为第四层的输出,卷积核个数为256,kernel_size = (3 × 3 × 192),padding = 1。然后直接进行max_pooling, pool_size = (3, 3), stride = 2;

  第6,7,8层是全连接层,每一层的神经元的个数为4096,最终输出softmax为1000,因为上面介绍过,ImageNet这个比赛的分类个数为1000。全连接层中使用了Relu和Dropout。

2.数据集

  数据集为猫狗的图片,其中猫的图片12500张,狗的图片12500张;训练数据集猫12300张,狗12300张,验证集猫100张,狗100张,测试集猫100张,狗100张;数据集链接:https://pan.baidu.com/s/11UHodPIHRDwHiRoae_fqtQ 提取码:d0fa;下图为训练集示意图:

3.数据集分类

  将数据集中的猫和狗分别放在train_0和train_1中:

import os
import re
import shutil

origin_path = '/workspace/src/how-to-read-paper/dataset/train'
target_path_0 = '/workspace/src/how-to-read-paper/dataset/train_0/0'
target_path_1 = '/workspace/src/how-to-read-paper/dataset/train_0/1'

os.makedirs(target_path_0, exist_ok=True)
os.makedirs(target_path_1, exist_ok=True)

file_list = os.listdir(origin_path)

for i in range(len(file_list)):
    old_path = os.path.join(origin_path, file_list[i])
    result = re.findall(r'\w+', file_list[i])[0]
    if result == 'cat':
        shutil.move(old_path, target_path_0)
    else:
        shutil.move(old_path, target_path_1)

4.模型搭建

  进行模型搭建和数据导入:

import torch
import os
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder
import torch.optim as optim
import torch.utils.data
from PIL import Image
import torchvision.transforms as transforms

# 超参数设置
DEVICE = torch.device('cuda'if torch.cuda.is_available() else 'cpu')
EPOCH = 100
BATCH_SIZE = 256

# 卷积层和全连接层、前向传播
class AlexNet(nn.Module):
    def __init__(self, num_classes=2):
        super(AlexNet, self).__init__()
        # 卷积层
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(48, 128, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        # 全连接层q
        self.classifier = nn.Sequential(
            nn.Linear(6*6*128, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(2048, num_classes),
        )
    # 前向传播
    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
    
        return x
    
# 训练集、测试集、验证集的导入
# 归一化处理
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

# 训练集
path_1 = '/workspace/src/how-to-read-paper/dataset/train_0'
trans_1 = transforms.Compose([
    transforms.Resize((65, 65)),
    transforms.ToTensor(),
    normalize,
])

# 数据集
train_set = ImageFolder(root=path_1, transform=trans_1)
# 数据加载器
train_loader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

# 测试集
path_2 = '/workspace/src/how-to-read-paper/dataset/test'
trans_2 = transforms.Compose([
    transforms.Resize((65, 65)),
    transforms.ToTensor(),
    normalize,
])
test_data = ImageFolder(root=path_2, transform=trans_2)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

# 验证集
path_3 = '/workspace/src/how-to-read-paper/dataset/valid'
trans_3 = transforms.Compose([
    transforms.Resize((65, 65)),
    transforms.ToTensor(),
    normalize,
])
valid_data = ImageFolder(root=path_3, transform=trans_3)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

5.训练

  进行模型训练:

# 定义模型
model = AlexNet().to(DEVICE)
# 优化器的选择
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005)

def train_model(model, device, train_loader, optimizer, epoch):
    train_loss = 0
    model.train()
    for batch_index, (data, label) in enumerate(train_loader):
        data, label = data.to(device), label.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, label)
        loss.backward()
        optimizer.step()
        if batch_index % 300 == 0:
            train_loss = loss.item()
            print('Train Epoch:{}\ttrain loss:{:.6f}'.format(epoch, loss.item()))

    return train_loss

def test_model(model, device, test_loader):
    model.eval()
    correct = 0.0
    test_loss = 0.0

    # 不需要梯度的记录
    with torch.no_grad():
        for data, label in test_loader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            pred = output.argmax(dim=1)
            correct += pred.eq(label.view_as(pred)).sum().item()
        test_loss /= len(test_loader.dataset)
        print('Test_average_loss:{:.4f}, Accuracy:{:3f}\n'.format(test_loss, 100*correct/len(test_loader.dataset)))
        acc = 100*correct / len(test_loader.dataset)

    return test_loss, acc

# 开始训练¶
list = []
Train_Loss_list = []
Valid_Loss_list = []
Valid_Accuracy_list = []

for epoch in range(1, EPOCH+1):
    # 训练集训练
    train_loss = train_model(model, DEVICE, train_loader, optimizer, epoch)
    Train_Loss_list.append(train_loss)
    torch.save(model, r'/workspace/src/how-to-read-paper/model/model%s.pth' % epoch)

    # 验证集进行验证
    test_loss, acc = test_model(model, DEVICE, valid_loader)
    Valid_Loss_list.append(test_loss)
    Valid_Accuracy_list.append(acc)
    list.append(test_loss)

6.测试

  进行模型测试:

# 验证集的test_loss

min_num = min(list)
min_index = list.index(min_num)

print('model%s' % (min_index+1))
print('验证集最高准确率:')
print('{}'.format(Valid_Accuracy_list[min_index]))

# 取最好的进入测试集进行测试
model = torch.load('/workspace/src/how-to-read-paper/model/model%s.pth' % (min_index+1))
model.eval()

accuracy = test_model(model, DEVICE, test_loader)
print('测试集准确率')
print('{}%'.format(accuracy))

7.实验结果分析

  下图为epoch为50和100的loss和acc的折线图,其中使用最优的模型epoch=50时测试集的loss=0.00132, acc=89.0%;其中使用最优的模型epoch=100时测试集的loss=0.00203, acc=91.5%;从实验结果可以看出epoch=20时模型train已经很好了,那么想要train一个更好的模型有方法吗?答案肯定是有的,比如说做一下数据增强、使用正则化项、噪声注入等,这些大家都可以尝试一下。

  注:本实验代码地址

 

 

与AlexNet论文解读相似的内容: