NumPy 简单算术:加减乘除及其他运算

numpy · 浏览次数 : 0

小编点评

本教程介绍了NumPy库中的条件算术运算,允许在数组之间进行条件计算。首先,回顾了基本的算术运算符,然后详细介绍了自定义条件计算的方法。 1. **简介**: - 列出了本节的主要功能。 - 解释了与NumPy的基本算术运算的不同之处。 2. **加法add()**: - 说明函数`np.add()`的功能和用法。 - 通过示例展示了如何将两个数组相加。 - 提供了输出示例。 3. **减法subtract()**: - 描述了函数`np.subtract()`的功能和用途。 - 通过例子说明了如何从一个数组中减去另一个数组的值。 - 提供输出样本。 4. **乘法multiply()**: - 阐述函数`np.multiply()`的功能和用法。 - 同样用示例来展示如何将多个数组相乘。 - 输出示例。 5. **除法divide()**: - 介绍函数`np.divide()`的功能并演示其用法。 - 使用示例表明如何进行数组间的除法操作。 - 输出样例。 6. **幂power()**: - 解释`np.power()`函数的作用和使用方法。 - 通过示例显示如何将一个数组的元素提升至另一个数组的幂。 - 输出示例。 7. **余数mod() 和 remainder()**: - 讨论了`np.mod()`和`np.remainder()`两函数的区别。 - 分别用示例展示了这两个函数的用法及结果。 8. **商和余数divmod()**: - 描述了`np.divmod()`函数返回商和余数的功能。 - 提供了具体案例来解释该函数的应用。 - 输出示例。 9. **绝对值absolute() 和 abs()**: - 重申绝对值操作的普遍适用性。 - 强调使用`np.absolute()`来避免与Python内置函数混淆。 - 示例说明了如何使用该函数。 总的来说,本教程为NumPy提供了丰富的条件算术运算能力,使得数组运算更加灵活和强大。

正文

简单算术

你可以直接在 NumPy 数组之间使用算术运算符 + - * /,但本节讨论了一个扩展,其中我们有函数可以接受任何类似数组的对象,如列表、元组等,并根据条件执行算术运算。

条件算术:意味着我们可以定义算术运算应该发生的条件。

所有讨论过的算术函数都接受一个 where 参数,我们可以在其中指定条件。

加法

add() 函数对两个数组的内容求和,并将结果返回到一个新数组中。

示例:将 arr1 中的值加到 arr2 的值中:

import numpy as np

arr1 = np.array([10, 11, 12, 13, 14, 15])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.add(arr1, arr2)

print(newarr)

上面的示例将返回 [30 32 34 36 38 40],这是 10+2011+2112+22 等的和。

减法

subtract() 函数将一个数组中的值减去另一个数组中的值,并将结果返回到一个新数组中。

示例:从 arr1 中的值中减去 arr2 中的值:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.subtract(arr1, arr2)

print(newarr)

上面的示例将返回 [-10 -1 8 17 26 35],这是 10-2020-2130-22 等的结果。

乘法

multiply() 函数将一个数组中的值与另一个数组中的值相乘,并将结果返回到一个新数组中。

示例:将 arr1 中的值与 arr2 中的值相乘:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.multiply(arr1, arr2)

print(newarr)

上面的示例将返回 [200 420 660 920 1200 1500],这是 10*2020*2130*22 等的结果。

除法

divide() 函数将一个数组中的值除以另一个数组中的值,并将结果返回到一个新数组中。

示例:将 arr1 中的值除以 arr2 中的值:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 10, 8, 2, 33])

newarr = np.divide(arr1, arr2)

print(newarr)

上面的示例将返回 [3.33333333 4. 3. 5. 25. 1.81818182],这是 10/320/530/10 等的结果。

power() 函数将第一个数组中的值提高到第二个数组中的值的幂,并将结果返回到一个新数组中。

示例:将 arr1 中的值提高到 arr2 中的值的幂:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 6, 8, 2, 33])

newarr = np.power(arr1, arr2)

print(newarr)

上面的示例将返回 [1000 3200000 729000000 6553600000000 2500 0],这是 10^320^530^6 等的结果。

余数

mod()remainder() 函数都返回第一个数组中的值与第二个数组中的值对应的余数,并将结果返回到一个新数组中。

示例:返回余数:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.mod(arr1, arr2)

print(newarr)

上面的示例将返回 [1 6 3 0 0 27],这是 10 除以 3 的余数 (10%3)、20 除以 7 的余数 (20%7)、30 除以 9 的余数 (30%9) 等。

当使用 remainder() 函数时,结果相同:

示例:返回余数:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.remainder(arr1, arr2)

print(newarr)

商和余数

divmod() 函数返回商和余数。返回值是两个数组,第一个数组包含商,第二个数组包含余数。

示例:返回商和余数:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.divmod(arr1, arr2)

print(newarr)

上面的示例将返回:

(array([3, 2, 3, 5, 25, 1]), array([1, 6, 3, 0, 0, 27]))

第一个数组表示商,(当你将 10 除以 320 除以 `7

30除以9` 等时得到的整数值。
第二个数组表示相同除法的余数。

绝对值

absolute()abs() 函数都对每个元素进行相同的绝对值操作,但我们应该使用 absolute() 来避免与 Python 的内置 math.abs() 混淆。

示例:返回商

和余数:

import numpy as np

arr = np.array([-1, -2, 1, 2, 3, -4])

newarr = np.absolute(arr)

print(newarr)

上面的示例将返回 [1 2 1 2 3 4]

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

与NumPy 简单算术:加减乘除及其他运算相似的内容:

NumPy 简单算术:加减乘除及其他运算

NumPy 中的简单算术运算可以通过 `add`, `subtract`, `multiply`, `divide`, `power`, `mod`, `remainder` 等函数实现,这些函数支持条件运算,并接受 `where` 参数。例如,`add()` 实现加法,`subtract()` 表...

【numpy基础】--通用计算

`numpy`提供了简单灵活的接口,用于优化数据数组的计算。 通用计算最大的优势在于通过向量化操作,将循环推送至`numpy`之下的编译层,从而取得更快的执行效率。 `numpy`的通用计算让我们计算数组时就像计算单独一个变量一样, 不用写循环去遍历数组中的各个元素。 比如,对于一般的`python

【pandas基础】--概述

Pandas是一个开源的Python数据分析库。 它提供了快速,灵活和富有表现力的数据结构,旨在使数据清洗和分析变得简单而快速。 Pandas是基于NumPy数组构建的,因此它在许多NumPy函数上提供了直接的支持。它还提供了用于对表格数据进行操作的数据结构,例如Series和DataFrame。

【numpy基础】--数组简介

`NumPy`(Numerical Python)是一个`Python`库,主要用于高效地处理多维数组和矩阵计算。它是科学计算领域中使用最广泛的一个库。 在`NumPy`中,**数组**是最核心的概念,用于存储和操作数据。 `NumPy`数组是一种多维数组对象,可以存储相同类型的元素,它支持高效的数

NumPy 差分、最小公倍数、最大公约数、三角函数详解

NumPy 助你处理数学问题:计算序列的差分用`np.diff()`,示例返回`[5, 10, -20]`;找最小公倍数(LCM)用`np.lcm()`,数组示例返回`18`;最大公约数(GCD)用`np.gcd.reduce()`,数组示例返回`4`;三角函数如`np.sin()`,`np.deg...

NumPy 舍入小数、对数、求和和乘积运算详解

NumPy 提供五种舍入小数的方法:`trunc()`, `fix()`, `around()`, `floor()`, `ceil()`。此外,它还支持对数运算,如 `log2()`, `log10()`, `log()`,以及自定义底数的对数。NumPy 的 `sum()` 和 `prod()`...

机器学习算法(一):1. numpy从零实现线性回归

系列文章目录 机器学习算法(一):1. numpy从零实现线性回归 机器学习算法(一):2. 线性回归之多项式回归(特征选取) @目录系列文章目录前言一、理论介绍二、代码实现1、导入库2、准备数据集3、定义预测函数(predict)4 代价(损失)函数5 计算参数梯度6 批量梯度下降7 训练8 可视

数据分析---numpy模块

前戏 NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。 快捷键的使用: 添加cell:a或者b 删除:x 修改cell的模式: m:修改成markdown模式

NumPy 数组排序、过滤与随机数生成详解

本文介绍了NumPy中的数组排序和过滤功能。`np.sort()`函数用于对数组进行升序排序,对二维数组则按行排序。示例展示了如何对一维和二维数组排序。此外,还讲解了使用布尔索引来过滤数组,以及直接在条件中操作数组以创建过滤后的数组。最后,介绍了NumPy的随机数生成,包括整数、浮点数及特定分布的随...

NumPy 分割与搜索数组详解

NumPy 分割数组 NumPy 提供了 np.array_split() 函数来分割数组,将一个数组拆分成多个较小的子数组。 基本用法 语法: np.array_split(array, indices_or_sections, axis=None) array: 要分割的 NumPy 数组。 i