Wakeup Source框架设计与实现

wakeup,source · 浏览次数 : 0

小编点评

本文介绍了一种基于Linux内核的Wakeup Source模块,该模块为系统组件提供了投票机制,以便低功耗子系统判断当前是否可以进入休眠。Wakeup Source模块与内核中的其他模块或上层服务交互,并最终体现在对sleep锁的控制上。 1. 模块功能说明 Wakeup Source模块主要包括以下功能: - 处理逻辑围绕combined_event_count变量展开,记录系统已处理的唤醒事件总数和高16位记录在处理中的唤醒事件总数。 - 持锁和释放锁注册和注销锁查询激活状态锁个数 - 提供了对外提供的主要接口:wakeup_source_register()与wakeup_source_unregister()分别用于注册与注销一个ws,pm_stay_awake()与pm_relax()分别用于针对device类型对象和ws类型对象的持锁与释放锁接口 2. 主要数据结构 - wakeup_source 结构体,用于描述wakeup source的相关信息。 - 常见的数据结构包括wakeirq、timer、total_time、max_time等。 3. 核心变量 - combined_event_count 变量用于记录唤醒事件总数和处理中唤醒事件总数。 - wakeup_sources 变量用于维护所有注册的唤醒源。 4. 主要函数分析 - wakeup_source_register()和wakeup_source_unregister()函数用于操作wakeup source的注册与注销。 - 其他核心函数如__pm_stay_awake()和__pm_relax()用于持锁与释放ws锁,阻止或允许系统休眠。 5. main工作时序 - device或其他需要上锁的模块在需要时调用函数注册ws。 - 在正常流程中,使用pm_stay_awake()或__pm_stay_awake()函数持锁,防止系统进入休眠。 - 在业务处理完毕后,调用pm_relax()或__pm_relax()函数释放锁,允许系统休眠。 - 在__pm_relax()释放锁时,会检查当前是否有正在处理的唤醒事件。如果没有,则触发wakeup_count_wait_queue等操作。 通过Wakeup Source模块,系统可以根据唤醒事件的总数和正在处理中的唤醒事件数目来判断是否可以进入休眠状态,从而实现智能的休眠管理。

正文

Wakeup Source 为系统组件提供了投票机制,以便低功耗子系统判断当前是否可以进入休眠。

Wakeup Source(后简称:WS) 模块可与内核中的其他模块或者上层服务交互,并最终体现在对睡眠锁的控制上。

通用低功耗软件栈.png

 

1. 模块功能说明

WS的处理逻辑基本上是围绕 combined_event_count 变量展开的,这个变量高16位记录系统已处理的所有的唤醒事件总数,低16位记录在处理中的唤醒事件总数。每次持锁时,处理中的唤醒事件记录(低16位)会加1;每次释放锁时,处理中的唤醒事件记录(低16位)会减1,同时已处理的唤醒事件记录(高16位)会加1。

对于每次系统能否进入休眠,通过判断是否有正在处理中的唤醒事件(低16位)来决定。该模块实现主要的功能:

  • 持锁和释放锁
  • 注册和注销锁
  • 查询激活状态锁个数

2. 主要数据结构

2.1 wakeup_source 结构体

@include/linux/pm_wakeup.h
/**
 * struct wakeup_source - Representation of wakeup sources
 *
 * @name: Name of the wakeup source
 * @id: Wakeup source id
 * @entry: Wakeup source list entry
 * @lock: Wakeup source lock
 * @wakeirq: Optional device specific wakeirq
 * @timer: Wakeup timer list
 * @timer_expires: Wakeup timer expiration
 * @total_time: Total time this wakeup source has been active.
 * @max_time: Maximum time this wakeup source has been continuously active.
 * @last_time: Monotonic clock when the wakeup source's was touched last time.
 * @prevent_sleep_time: Total time this source has been preventing autosleep.
 * @event_count: Number of signaled wakeup events.
 * @active_count: Number of times the wakeup source was activated.
 * @relax_count: Number of times the wakeup source was deactivated.
 * @expire_count: Number of times the wakeup source's timeout has expired.
 * @wakeup_count: Number of times the wakeup source might abort suspend.
 * @dev: Struct device for sysfs statistics about the wakeup source.
 * @active: Status of the wakeup source.
 * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time.
 */
struct wakeup_source {
	const char 		*name; //ws 名称
	int			id;  //WS系统给本ws分配的ID
	struct list_head	entry; //用于把本ws节点维护到WS系统的全局链表中
	spinlock_t		lock;
	struct wake_irq		*wakeirq; //与本ws节点绑定的唤醒中断相关的结构体,用户可自行把指定中断与ws绑定
	struct timer_list	timer; //超时锁使用,如定义本ws为超时锁,指定在一定时间后释放锁
	unsigned long		timer_expires;//超时锁超时时间
	ktime_t total_time; //本ws激活的总时长
	ktime_t max_time;   //在ws激活历史中,最长一次的激活时间
	ktime_t last_time;  //最后一次访问本ws的时间
	ktime_t start_prevent_time; //本ws最近一次阻止autosleep进入休眠的时间戳
	ktime_t prevent_sleep_time; //因本ws导致的阻止autosleep进入休眠的总时间
	unsigned long		event_count; //事件次数,本ws被持锁(不考虑是否已持锁),则加1并作记录
	unsigned long		active_count;//激活次数,本ws仅在首次持锁(激活)时加1(已持锁则不加1,锁释放后再次持锁则加1)
	unsigned long		relax_count; //释放次数,与 active_count 相对
	unsigned long		expire_count; //超时锁超时次数
	unsigned long		wakeup_count; //与event_count一样,但受events_check_enabled 使能标记控制
	struct device		*dev; //与本ws绑定的设备
	bool			active:1; //标记是否处于激活状态
	bool			autosleep_enabled:1; //标记是否使能autosleep
};

2.2 核心变量

2.2.1 combined_event_count 变量

static atomic_t combined_event_count = ATOMIC_INIT(0);
该变量是1个组合计数变量,高16位记录唤醒事件的总数,低16位记录正在处理中的唤醒事件的总数。系统根据低16位(正在处理中的唤醒事件)来判断是否可以进入休眠。

2.2.2 wakeup_sources 变量

static LIST_HEAD(wakeup_sources);
所有通过调用 wakeup_source_register()注册的ws全部维护在此链表中,以便系统进行维护。

2.3 主要函数分析

Wakeup Source 对外提供的主要接口:

  • wakeup_source_register()wakeup_source_unregister()分别用于注册与注销一个ws
  • __pm_stay_awake()__pm_relax(),针对ws类型对象提供持锁与释放锁接口
  • (device_set_wakeup_capable()+device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable())/device_init_wakeup()给设备配置是否支持唤醒以及注册/注销ws的接口
  • pm_stay_awake()pm_relax(),针对device类型对象提供持锁与释放锁接口

2.3.1 wakeup_source_register()/wakeup_source_unregister() 接口

wakeup_source_register()函数为dev设备创建ws,并将创建的ws添加到全局链表wakeup_sources中,方便后续维护,并在sysfs系统中创建节点/sys/class/wakeup/wakeup<id>/,便于获取ws相关信息。

@drivers/base/power/wakeup.c
/**
 * wakeup_source_register - Create wakeup source and add it to the list.
 * @dev: Device this wakeup source is associated with (or NULL if virtual).
 * @name: Name of the wakeup source to register.
 */
struct wakeup_source *wakeup_source_register(struct device *dev,
					     const char *name)
{
	struct wakeup_source *ws;
	int ret;

	ws = wakeup_source_create(name); //分配内存,设置ws的name和id
	if (ws) {
		if (!dev || device_is_registered(dev)) {
			//在sysfs下为该ws创建dev, /sys/class/wakeup/wakeup<id>/
			ret = wakeup_source_sysfs_add(dev, ws);
			if (ret) {
				wakeup_source_free(ws);
				return NULL;
			}
		}
		wakeup_source_add(ws); //设置超时回调函数并将ws添加到wakeup_sources链表
	}
	return ws;
}
@drivers/base/power/wakeup_stats.c
static struct device *wakeup_source_device_create(struct device *parent,
						  struct wakeup_source *ws)
{
	struct device *dev = NULL;
	int retval = -ENODEV;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	device_initialize(dev);
	dev->devt = MKDEV(0, 0);
	dev->class = wakeup_class; //ws dev挂于wakeup类
	dev->parent = parent;
	dev->groups = wakeup_source_groups;
	dev->release = device_create_release;
	dev_set_drvdata(dev, ws);
	device_set_pm_not_required(dev);
	retval = kobject_set_name(&dev->kobj, "wakeup%d", ws->id);
	retval = device_add(dev);
	return dev;
}
//ws dev存在的属性: /sys/class/wakeup/wakeup<id>/
static struct attribute *wakeup_source_attrs[] = {
	&dev_attr_name.attr, //RO, ws 名称
	&dev_attr_active_count.attr, //RO, 激活次数
	&dev_attr_event_count.attr, //RO, 持锁次数
	&dev_attr_wakeup_count.attr, //RO, 同event_count,但受events_check_enabled使能标记
	&dev_attr_expire_count.attr, //RO, 超时次数
	&dev_attr_active_time_ms.attr, //RO, 如当前处于激活状态,显示已激活时间
	&dev_attr_total_time_ms.attr, //RO, 总激活时间
	&dev_attr_max_time_ms.attr, //RO, 最长激活时间
	&dev_attr_last_change_ms.attr, //RO, 最近一次激活时的时间戳
	&dev_attr_prevent_suspend_time_ms.attr, //RO, 阻止autosleep进入休眠的总时间
	NULL,
};
ATTRIBUTE_GROUPS(wakeup_source);

wakeup_source_unregister() 接口删除了已注册的ws,移除了sysfs系统中的节点并释放占用的系统资源。

@drivers/base/power/wakeup.c
void wakeup_source_unregister(struct wakeup_source *ws)
{
	if (ws) {
		wakeup_source_remove(ws); //从wakeup_sources队列移除并删除其定时器
		if (ws->dev)
			wakeup_source_sysfs_remove(ws);//移除该ws在sysfs系统中的信息

		wakeup_source_destroy(ws);
	}
}
void wakeup_source_destroy(struct wakeup_source *ws)
{
	__pm_relax(ws); //释放该ws
	wakeup_source_record(ws);//如果该ws被持锁过,则将其记录叠加到deleted_ws这个ws上
	wakeup_source_free(ws);//释放内存资源
}

static struct wakeup_source deleted_ws = {//用于保存已移除ws的记录
	.name = "deleted",
	.lock =  __SPIN_LOCK_UNLOCKED(deleted_ws.lock),
};

static void wakeup_source_record(struct wakeup_source *ws)
{
	unsigned long flags;

	spin_lock_irqsave(&deleted_ws.lock, flags);

	if (ws->event_count) {//如果该ws被持锁过,则将记录都叠加到deleted_ws这个ws上
		deleted_ws.total_time =
			ktime_add(deleted_ws.total_time, ws->total_time);
		deleted_ws.prevent_sleep_time =
			ktime_add(deleted_ws.prevent_sleep_time,
				  ws->prevent_sleep_time);
		deleted_ws.max_time =
			ktime_compare(deleted_ws.max_time, ws->max_time) > 0 ?
				deleted_ws.max_time : ws->max_time;
		deleted_ws.event_count += ws->event_count;
		deleted_ws.active_count += ws->active_count;
		deleted_ws.relax_count += ws->relax_count;
		deleted_ws.expire_count += ws->expire_count;
		deleted_ws.wakeup_count += ws->wakeup_count;
	}

	spin_unlock_irqrestore(&deleted_ws.lock, flags);
}

2.3.2 __pm_stay_awake()/__pm_relax() 接口

__pm_stay_awake() 用于上锁ws来阻止系统休眠。

@drivers/base/power/wakeup.c
void __pm_stay_awake(struct wakeup_source *ws)
{
	unsigned long flags;

	if (!ws)
		return;

	spin_lock_irqsave(&ws->lock, flags);

	wakeup_source_report_event(ws, false);//纪录该ws的信息
	del_timer(&ws->timer);
	ws->timer_expires = 0;

	spin_unlock_irqrestore(&ws->lock, flags);
}
static void wakeup_source_report_event(struct wakeup_source *ws, bool hard)
{
	ws->event_count++;  //持锁次数加1
	/* This is racy, but the counter is approximate anyway. */
	if (events_check_enabled)
		ws->wakeup_count++;

	if (!ws->active) //ws还未激活情况下,激活ws
		wakeup_source_activate(ws);

	if (hard)  //如果需要,可以强制阻止系统休眠
		pm_system_wakeup();
}
static void wakeup_source_activate(struct wakeup_source *ws)
{
	unsigned int cec;

	if (WARN_ONCE(wakeup_source_not_registered(ws),
			"unregistered wakeup source\n"))
		return;

	ws->active = true;
	ws->active_count++;  //激活次数加1
	ws->last_time = ktime_get(); //纪录最后操作该锁的时间戳
	if (ws->autosleep_enabled) //如果autosleep已使能,则记录该ws阻止休眠时时间戳
		ws->start_prevent_time = ws->last_time;

	/* Increment the counter of events in progress. */
	cec = atomic_inc_return(&combined_event_count); //combined_event_count低16位加1

	trace_wakeup_source_activate(ws->name, cec);
}

__pm_relax() 用于将持有的睡眠锁释放掉,并在检测到combined_event_count低16位为0(表示当前没有在处理的ws)时会触发wakeup_count_wait_queue等待队列运行,如果工作队列满足睡眠条件,则继续进入睡眠流程,该机制是通过pm_get_wakeup_count()接口与autosleep配合使用的

@drivers/base/power/wakeup.c
void __pm_relax(struct wakeup_source *ws)
{
	unsigned long flags;

	if (!ws)
		return;

	spin_lock_irqsave(&ws->lock, flags);
	if (ws->active) //如果ws已激活,则去激活该ws
		wakeup_source_deactivate(ws);
	spin_unlock_irqrestore(&ws->lock, flags);
}

static void wakeup_source_deactivate(struct wakeup_source *ws)
{
	unsigned int cnt, inpr, cec;
	ktime_t duration;
	ktime_t now;

	ws->relax_count++; //释放次数加1
	/*
	 * __pm_relax() may be called directly or from a timer function.
	 * If it is called directly right after the timer function has been
	 * started, but before the timer function calls __pm_relax(), it is
	 * possible that __pm_stay_awake() will be called in the meantime and
	 * will set ws->active.  Then, ws->active may be cleared immediately
	 * by the __pm_relax() called from the timer function, but in such a
	 * case ws->relax_count will be different from ws->active_count.
	 */
	if (ws->relax_count != ws->active_count) {
		ws->relax_count--; //未解决定时锁与主动调用释放锁并发操作时出现冲突做的处理
		return;
	}

	ws->active = false;

	now = ktime_get();
	duration = ktime_sub(now, ws->last_time);
	ws->total_time = ktime_add(ws->total_time, duration); //叠加总的持锁时间
	if (ktime_to_ns(duration) > ktime_to_ns(ws->max_time))
		ws->max_time = duration;  //更新最长持锁时间

	ws->last_time = now; //纪录最后操作该锁的时间戳
	del_timer(&ws->timer);
	ws->timer_expires = 0;

	if (ws->autosleep_enabled)//如果autosleep已使能,更新该ws阻止系统休眠的时长
		update_prevent_sleep_time(ws, now);

	/*
	 * Increment the counter of registered wakeup events and decrement the
	 * couter of wakeup events in progress simultaneously.
	 */
	cec = atomic_add_return(MAX_IN_PROGRESS, &combined_event_count);//combined_event_count高16位加1
	trace_wakeup_source_deactivate(ws->name, cec);

	split_counters(&cnt, &inpr);//拆分出combined_event_count高16位和低16位
	if (!inpr && waitqueue_active(&wakeup_count_wait_queue))//如果该ws已经无正在处理的唤醒事件,则通知PM core
		wake_up(&wakeup_count_wait_queue);
}

注:同个ws连续使用多次__pm_stay_awake()__pm_relax()只会增加/减少一次combined_event_count低16位(表示正在处理中的事件总数),只要__pm_relax()被调用就会释放锁。

2.3.3 pm_get_wakeup_count()接口

该函数主要是获取已处理的wakeup event数量(combined_event_count高16位)与正在处理的wakeup event数量是否为0(combined_event_count低16位)。

bool pm_get_wakeup_count(unsigned int *count, bool block)
{
	unsigned int cnt, inpr;

	if (block) { 
		DEFINE_WAIT(wait); //定义名为wait的等待队列入口

		for (;;) {
			prepare_to_wait(&wakeup_count_wait_queue, &wait,
					TASK_INTERRUPTIBLE); //准备 wakeup_count_wait_queue 等待队列
			split_counters(&cnt, &inpr);
			if (inpr == 0 || signal_pending(current))
				break;
			pm_print_active_wakeup_sources();
			schedule(); //调度到其他线程
		}
		 //__pm_relax() 里wake_up(&wakeup_count_wait_queue);会触发调度到此处
		finish_wait(&wakeup_count_wait_queue, &wait);
	}

	split_counters(&cnt, &inpr);
	*count = cnt;
	return !inpr; //返回0表示有待处理事件,返回1表示无待处理事件
}

1.如果入参block为0,则仅仅对入参count赋值当前已处理的wakeup event总数,并返回当前是否有待处理wakeup event(返回0表示有待处理事件,返回1表示无待处理事件)。
2.如果入参block为1,则需要一直等到待处理事件为0(combined_event_count低16位为0)或者当前挂起进程有事件需要处理时才退出。该处理分支的wait等待队列会在__pm_relax()满足睡眠条件时触发调度运行,即finish_wait().

2.3.4 pm_wakeup_pending() 接口

该函数的功能是确认当前是否满足休眠条件,返回true表示可以休眠,false表示不可休眠。

bool pm_wakeup_pending(void)
{
	unsigned long flags;
	bool ret = false;

	raw_spin_lock_irqsave(&events_lock, flags);
	if (events_check_enabled) {
		unsigned int cnt, inpr;

		split_counters(&cnt, &inpr);
		ret = (cnt != saved_count || inpr > 0);
		events_check_enabled = !ret;
	}
	raw_spin_unlock_irqrestore(&events_lock, flags);

	if (ret) {
		pm_pr_dbg("Wakeup pending, aborting suspend\n");
		pm_print_active_wakeup_sources();
	}

	return ret || atomic_read(&pm_abort_suspend) > 0;
}

判断允许休眠的依据:
1.已处理的wakeup event数量与已记录的数量(saved_count)一致,且
2.待处理的wakeup event数量为0,且
3.原子量pm_abort_suspend为0(该值大于0表示睡眠流程中出现了唤醒中断或事件,唤醒事件通过调用pm_system_wakeup()来给pm_abort_suspend加1操作。)

2.3.5 device与wakeup_source关联处理的接口

kernel抽象出的device数据结构存放着power manager相关的信息,其中就存放着wakeup source数据结构,如下:

//代码格式错误,仅为呈现数据结构,请忽略格式。
struct device {
	// @power:	For device power management.
	struct dev_pm_info	power {
		unsigned int		can_wakeup:1; //需置1才允许使用wakeup source
		struct wakeup_source	*wakeup; 
	};
};

wakeup source框架中为此提供了大量相关的接口直接操作某个dev的ws,接口如下:

  • int device_wakeup_enable(struct device *dev) :注册设备的wakeup source
    1.以dev名注册个ws,并指定该ws dev的parent为当前dev
    2.将注册的ws关联到dev->power.wakeup,如果存在wakeirq,也会一起绑定到该ws上。

  • int device_wakeup_disable(struct device *dev):注销设备的wakeup source
    1.取消已注册的ws与dev->power.wakeup的关联
    2.注销ws

  • void device_set_wakeup_capable(struct device *dev, bool capable):设置设备是否支持wakeup source
    1.设置dev->power.can_wakeup
    2.如果设备支持wakeup,则为其创建属性文件(位于/sys/devices/<dev_name>/power/下);如果设备不支持wakeup,则不会移除相关属性文件。

static struct attribute *wakeup_attrs[] = {
#ifdef CONFIG_PM_SLEEP
	&dev_attr_wakeup.attr, //RW,可写入enabled/disabled动态配置是否支持wakeup
	&dev_attr_wakeup_count.attr, //RO, 读取该dev ws的wakeup_count
	&dev_attr_wakeup_active_count.attr, //RO, 读取该dev ws的active_count
	&dev_attr_wakeup_abort_count.attr, //RO, 读取该dev ws的wakeup_count
	&dev_attr_wakeup_expire_count.attr, //RO, 读取该dev ws的expire_count
	&dev_attr_wakeup_active.attr, //RO, 读取该dev ws的active状态
	&dev_attr_wakeup_total_time_ms.attr, //RO, 读取该dev ws的total_time
	&dev_attr_wakeup_max_time_ms.attr, //RO, 读取该dev ws的max_time
	&dev_attr_wakeup_last_time_ms.attr, //RO, 读取该dev ws的last_time
#ifdef CONFIG_PM_AUTOSLEEP
	&dev_attr_wakeup_prevent_sleep_time_ms.attr, //RO, 读取该dev ws的prevent_sleep_time
#endif
#endif
	NULL,
};
  • int device_init_wakeup(struct device *dev, bool enable):一步到位直接配置是否支持wakeup并且注册/注销ws
int device_init_wakeup(struct device *dev, bool enable)
{
	int ret = 0;

	if (enable) {
		device_set_wakeup_capable(dev, true);
		ret = device_wakeup_enable(dev);
	} else {
		device_wakeup_disable(dev);
		device_set_wakeup_capable(dev, false); 
	}

	return ret;
}
  • int device_set_wakeup_enable(struct device *dev, bool enable):设置设备是否能通过ws唤醒系统,注册/注销ws
int device_set_wakeup_enable(struct device *dev, bool enable)
{
	return enable ? device_wakeup_enable(dev) : device_wakeup_disable(dev);
}
  • void pm_stay_awake(struct device *dev):持锁设备的ws,不让设备休眠,实际是调用__pm_stay_awake(dev->power.wakeup);实现

  • void pm_relax(struct device *dev):释放设备的ws,允许设备休眠,实际是调用__pm_relax(dev->power.wakeup);实现

总结:
1.device_set_wakeup_capable() 用于设置是否支持wakeup,并提供属性节点,便于调试
2.device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable()主要是注册/注销设备ws,需在device_set_wakeup_capable()enabled的前提下才能使用。
3.device_init_wakeup() 通常使用在默认支持wakeup的device上,在probe/remove时分别enable/disable。
4.pm_stay_awake()/pm_relax()主要是持有/释放ws锁,阻止/允许系统休眠

3. 主要工作时序

1)device或者其他需要上锁的模块调用device_init_wakeup()/wakeup_source_register()来注册ws
2)在处理业务时,为了防止系统进入睡眠流程,设备或模块可以通过调用pm_stay_awake()/__pm_stay_awake()来持锁ws阻止休眠
3)当业务处理完成后,设备或模块可以调用pm_relax()/__pm_relax()来释放ws允许系统休眠
4)在__pm_relax()释放锁时,会检查当前是否有正在处理的持锁事件,如果没有,则触发wakeup_count_wait_queue
5)wakeup_count_wait_queue所在的pm_get_wakeup_count()接口会返回到autosleep的工作队列中继续走休眠流程
image

4. 调试节点

  1. 获取所有wakeup source信息节点:cat /d/wakeup_sources
    列出所有wakeup_source当前的信息,包括:name,active_count,event_count,wakeup_count,expire_count,active_since,total_time,max_time,last_change,prevent_suspend_time。
    注:代码实现在@drivers/base/power/wakeup.c

  2. 从wakeup类下获取某个ws的信息:/sys/class/wakeup/wakeup<id>/
    wakeup类下汇总了所有已注册的ws,该节点下存在属性:name, active_count, event_count, wakeup_count,expire_count, active_time_ms, total_time_ms, max_time_ms, last_change_ms, prevent_suspend_time_ms。
    注:代码实现在@drivers/base/power/wakeup_stats.c

  3. 从device节点下获取该设备的ws信息:/sys/devices/<dev_name>/power/
    该节点存在如下属性信息:wakeup(是否支持唤醒),wakeup_count, wakeup_active_count, wakeup_abort_count, wakeup_expire_count, wakeup_active, wakeup_total_time_ms, max_time_ms, last_time_ms, prevent_sleep_time_ms。
    注:代码实现在@drivers/base/power/sysfs.c

注:本文是基于内核kernel-5.10展开。上述分析基于32位系统,若是64位系统,则combined_event_count会被拆分成2个32位分别来纪录唤醒事件的总数和正在处理中的唤醒事件的总数

与Wakeup Source框架设计与实现相似的内容: