「网络流浅谈」最小割的模型 1

· 浏览次数 : 0

小编点评

```python def add(int a, int b, double c1, double c2): te[idx] = b ne[idx] = h[a] f[idx] = c1 h[a] = idx + 1 def bfs(): # Initialize a queue and a visited array queue = [] d = [0] * len(s) cur = [h[s]] # While the queue is not empty, continue while q: # Pop the front element from the queue u = q.front() q.pop() # For each neighbor of the current node, update its distance and # explore if it has a path to the target node for i in range(h[u]): v = e[i] if d[v] == -1 and f[i] > 0: # Set the distance to the target node and the parent of the current node td[v] = d[u] + 1 cur[v] = h[v] # If we reach the target node, return True if v == t: return 1 # If we have explored all neighbors, return False return 0 def find(int u, double lim): # If we reach the target node, return the limit if u == t: return lim # Initialize flow to 0 flow = 0 # Explore the neighbors of the current node for i in range(cur[u]): v = e[i] # If we find a neighbor with a path to the target node and # if the flow is less than the limit, explore it if d[v] == d[u] + 1 and f[i] > 0: # Set the distance to the target node and the parent of the current node tdouble tmp = find(v, min(lim - flow, f[i])) if tmp < 0: d[v] = -1 f[i] -= tmp flow += tmp # Backtrack and explore other neighbors else: dfs(v) return flow # Return the flow after exploring all neighbors return flow def build(double g): # Initialize the parent array h = [-1] * len(s) # Add the edges of the graph to the adjacency list for v in E: add(v.fi, v.se, 1, 1) # Add the starting node to the adjacency list for i in range(1, m + 1): add(s, i, m, 0) # Add the diagonal elements of the graph to the adjacency list for i in range(1, n + 1): add(i, t, 2.0 * g - dg[i] + m, 0) # Perform a Dinic algorithm to find the shortest path from the starting node to the target node dinic(g) # Define the main function def main(): # Read the input cin.tie(0) cout.tie(0) n, m = map(int, input().split()) # Read the edges of the graph E = [] for i in range(m): u, v = map(int, input().split()) E.append((u, v)) # Build the graph and start the DFS build(g) dfs(s) # Print the shortest path length if not res: print("1\1") else: print(len(res)) ```

正文

最大权闭合子图

引入

闭合子图指对于子图 \(G=(V,E)\)\(\forall u \in V, (u,v)\in E\),都有 \(v\in V\)

最大权闭合子图无非就是对于所有的闭合子图 \(G\)\(\sum_{u\in V} w_u\) 最大的闭合子图。

对于这个图中,闭合子图有哪些呢?

红色框圈画出的即为 \(1\) 个闭合子图,因为对于任意一个点所连向的点都在该子图内。

主算法

不难发现任意一个割所划分成的 \(2\) 个集合均为闭合子图,而我们要求最大权闭合子图,故考虑如何求解。

建立一个流网络,将源点向所有权值为正的点连一条长度为该点权值的边,将所有权值为负数的点向汇点连一条长度为该点权值的绝对值的边。对于原图中的边,在流网络中均为 \(+\infty\)

对于割 \([S,T]\)\(c(S,T)=\sum_{(u,v)\in E,u\in S,v\in T}c(u,v)\),由于中间的边权均为 \(+\infty\),所以只会割两边的边,即 \(c(S,T)=\sum_{(s,v)\in E,v\in T}c(s,v)+\sum_{(u,t)\in E,u\in S}c(u,t)\)

又因为建图的时候 \(s\) 所连向的边,均为连向点的边权;而连向 \(t\) 的边的边权均为连向他点的权值。故,\(c(S,T)=\sum_{(s,v)\in E,v\in T}c(s,v)+\sum_{(u,t)\in E,u\in S}c(u,t)=\sum_{(s,v)\in E,v\in T}w_v-\sum_{(u,t)\in E,u\in S}w_u\)

考虑最大权闭合子图的权值为什么?\(val=\sum_{(s,v)\in E,v\in S}w_v+\sum_{(u,t)\in E,u\in S}w_u\)

不难发现第二项是完全一样的:所以将 \(c(S,T)\)\(val\) 相加得,\(c(S,T)+val=\sum_{(s,v)\in E,v\in T}w_v+\sum_{(s,v)\in E,v\in S}w_v\)

由于 \(S\)\(T\) 共同构成了点集 \(V\),故 \(\sum_{(s,v)\in E,v\in T}w_v+\sum_{(s,v)\in E,v\in S}w_v=\sum_{(s,v)\in E}w_v=\sum_{w_v>0}w_v\)

综上所述,\(val=\sum_{w_v>0}w_v-c(S,T)\),通过数学知识推理得 \(c(S,T)\) 应最小,即求最小割。

P4174 [NOI2006] 最大获利

模版题,按照上述做法建图即可。

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 6e4 + 10, M = 4e5 + 10, INF = 1e18;

int n, m, s, t;
int a[N], b[N];
int h[N], e[M], ne[M], f[M], idx;
int dist[N], cur[N];

void add(int a, int b, int c) {
	e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
	e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
	memset(dist, -1, sizeof dist);
	queue<int> q;
	q.emplace(s), dist[s] = 0, cur[s] = h[s];
	while (q.size()) {
		auto u = q.front();
		q.pop();

		for (int i = h[u]; ~i; i = ne[i]) {
			int v = e[i];
			if (dist[v] == -1 && f[i]) {
				dist[v] = dist[u] + 1, cur[v] = h[v];
				if (v == t) return 1;
				q.emplace(v);
			}
		}
	}
	return 0;
}
int find(int u, int lim) {
	if (u == t) return lim;

	int flow = 0;
	for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
		cur[u] = i;
		int v = e[i];
		if (dist[v] == dist[u] + 1 && f[i]) {
			int tmp = find(v, min(f[i], lim - flow));
			if (!tmp) dist[v] = -1;
			flow += tmp, f[i] -= tmp, f[i ^ 1] += tmp;
		}
	}

	return flow;
}
int dinic() {
	int res = 0, flow;
	while (bfs()) while (flow = find(s, INF)) res += flow;
	return res;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> m;
	memset(h, -1, sizeof h);

	s = 0, t = n + m + 1;
	for (int i = 1; i <= n; i ++)
		cin >> a[i];
	for (int i = 1; i <= m; i ++) {
		int u, v;
		cin >> u >> v >> b[i];
		add(i + n, u, INF), add(i + n, v, INF);
	}

	int tot = 0;
	for (int i = 1; i <= m; i ++)
		add(s, i + n, b[i]), tot += b[i];
	for (int i = 1; i <= n; i ++)
		add(i, t, a[i]);

	cout << tot - dinic() << endl;

	return 0;
}

最大密度子图

引入

定义无向图 \(G=(V,E)\) 的密度为 \(\frac{|E|}{|V|}\)。则,对于一个无向图 \(G=(V,E)\),令 \(G\) 的子图 \(G'=(V',E')\),满足 \(\forall (u,v)\in E', u\in V',v\in V'\)。对于所有满足条件的子图 \(G\) 中,密度最大的即为最大密度子图。

主算法

对于形式 \(\frac{|E|}{|V|}\),不难想到通过分数规划求解,即二分 \(g\),如果 \(\frac{|E|}{|V|}\ge g\),则说明 \(g\) 还可以更大,调整二分左端点;反之,调整二分右端点。

将式子继续化简可以得到:\(|E|-g|V|\ge 0\),也就是求 \(|E|-g|V|\) 的最大值,即 \(g|V|-|E|\) 的最小值。

最小割是可以解决点集的,但是难以算出边数的多少。所以,考虑如何将边数加入割。

考虑红色圈出的子图,如何计算边数呢?可以考虑使用度数,某个点度数减去该点连向集合外部的边的个数再除 \(2\),即可得到集合内边的个数,即 \(\frac{\sum_{u\in V}d_u-c(V,\bar V)}{2}\)。这样,就与割产生了关系。

继续推式子:\(g|V|-|E|=\sum_{u\in V}g-\frac{\sum_{u\in V}d_u-c(V,\bar V)}{2}=\sum_{u\in V}(g-\frac{d_u}{2})+\frac{c(V,\bar V)}{2}\)

为了使与最小割有单调关系,将割 \(c(V,\bar V)\) 的系数提出得 \(\frac{\sum_{u\in V}(2g-d_u)+c(V,\bar V)}{2}\)

那么,就可以建图了。对于任意一个点 \(u\) 均向汇点 \(t\) 连一条边权为 \(2g-d_u\) 的边,不过由于 \(2g-d_u\) 可能会小于 \(0\),所以边权应为 \(2g-d_u+U\),其中 \(U\) 为常数。对于点之间的边,即为原图的边,为了算边数所以边权均为 \(1\)。源点 \(s\) 向任意一个点连一条边权为 \(U\) 的边即可。\(U\)\(|E|\) 即可,因为 \(d_u\) 不可能超过 \(|E|\)。下图为一个例子。

建完图后,由于部分边权多加了 \(U\),所以考虑新图最小割 \(c'(S,T)\)\(|E|-g|V|\) 的关系。令 \(P=S-\{s\},P'=\bar P - \{t\}\),则最小割的边集分为 \(4\) 种情况:\(P\rightarrow \{t\},\{s\}\rightarrow P',P\rightarrow P',\{s\}\rightarrow \{t\}\)。不过,最后一种边不存在舍去。

\[\begin{aligned} c'(S,T)=&\sum_{u\in P} (U+2g-d_u)+\sum_{v\in P'}U+\sum_{u\in P}\sum_{v\in P'}c(u,v)\\ =&\sum_{u\in P}(U+2g-d_u+\sum_{v\in P'}c(u,v))+\sum_{v\in P'}U\\ =&\sum_{u\in P}(U+2g-(d_u-\sum_{v\in P'}c(u,v)))+\sum_{v\in P'}U\\ =&\sum_{u\in P}(U+2g-\sum_{v\in P}c(u,v))+\sum_{v\in P'}U\leftarrow u\ 所有出边-向集合外边=向集合内边\\ =&\sum_{u\in P}2g-\sum_{u\in P}\sum_{v\in P}c(u,v)+\sum_{v\in P'}U+\sum_{v\in P}U\\ =&|P|2g+ 2|E|+U\cdot n\\ \end{aligned} \]

故,\(|E|-g|V|=\frac{U\cdot n-c'(S,T)}{2}\),这里 \(V\)\(P\) 等价,都是我们选出的点。到此,该问题得以解决。

POJ3155 - Hard Life

模版题,使用上述做法建图计算即可。

对于输出方案,选择的集合其实就是最小割中 \(S\) 集合,那么怎么找出呢?只需要从 \(s\) 每次走 \(>0\) 的边所能到达的点的集合,便是答案(注意:不能包含 \(s\))。

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 1e2 + 10, M = 3e3 + 10;
const double eps = 1e-6;

int n, m, s, t;
int h[N], e[M], ne[M], idx;
double f[M];
int d[N], cur[N], dg[N], st[N];
vector<int> res;
std::vector<PII> E;

void add(int a, int b, double c1, double c2) {
	e[idx] = b, ne[idx] = h[a], f[idx] = c1, h[a] = idx ++;
	e[idx] = a, ne[idx] = h[b], f[idx] = c2, h[b] = idx ++;
}
bool bfs() {
	memset(d, -1, sizeof d);
	queue<int> q;
	q.emplace(s), d[s] = 0, cur[s] = h[s];
	while (q.size()) {
		int u = q.front();
		q.pop();

		for (int i = h[u]; ~i; i = ne[i]) {
			int v = e[i];
			if (d[v] == -1 && f[i] > 0) {
				d[v] = d[u] + 1, cur[v] = h[v];
				if (v == t) return 1;
				q.emplace(v);
			}
		}
	}
	return 0;
}
double find(int u, double lim) {
	if (u == t) return lim;

	double flow = 0;
	for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
		cur[u] = i;
		int v = e[i];
		if (d[v] == d[u] + 1 && f[i] > 0) {
			double tmp = find(v, min(lim - flow, f[i]));
			if (tmp <= 0) d[v] = -1;
			f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
		}
	}

	return flow;
}
void build(double g) {
	memset(h, -1, sizeof h);
	idx = 0;
	for (auto v : E) add(v.fi, v.se, 1, 1);
	for (int i = 1; i <= n; i ++) add(s, i, m, 0);
	for (int i = 1; i <= n; i ++) add(i, t, 2.0 * g - dg[i] + m, 0);
}
bool dinic(double g) {
	build(g);
	double res = 0, flow;
	while (bfs()) while (flow = find(s, 1e18)) res += flow;
	return res < m * n * 1.0;
}
void dfs(int u) {
	if (u != s) res.emplace_back(u);
	st[u] = 1;
	for (int i = h[u]; ~i; i = ne[i]) {
		int v = e[i];
		if (!st[v] && f[i] > 0) dfs(v);
	}
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> m;

	s = 0, t = n + 1;
	for (int i = 1; i <= m; i ++) {
		int u, v;
		cin >> u >> v;
		E.emplace_back(u, v), dg[u] ++, dg[v] ++;
	}

	double l = 0, r = m;
	while (r - l > eps) {
		double mid = (l + r) * 0.5;
		if (dinic(mid)) l = mid;
		else r = mid;
	}

	dinic(l), dfs(s);
	if (!res.size()) {
		cout << "1\n1";
		return 0;
	}
	cout << res.size() << endl;
	sort(res.begin(), res.end());
	for (auto v : res)
		cout << v << endl;
	cout << endl;

	return 0;
}

与「网络流浅谈」最小割的模型 1相似的内容:

「网络流浅谈」最小割的模型 1

最大权闭合子图 引入 闭合子图指对于子图 \(G=(V,E)\),\(\forall u \in V, (u,v)\in E\),都有 \(v\in V\)。 最大权闭合子图无非就是对于所有的闭合子图 \(G\) 中 \(\sum_{u\in V} w_u\) 最大的闭合子图。 对于这个图中,闭合子

「网络流浅谈」最小割的模型

总结了最小割的四个模型——最大权闭合图,最大密度子图,最小点覆盖集,最大权独立集。带你走进最小割的神秘!

「网络流浅谈」网络流的概念

通常做题思路:问题转化为流网络,再通过最大流 / 最小割 / 费用流与问题之间的数量关系,求解出原问题。 网络流于其他算法不同,概念定理需要熟记于心,否则后面做题会有很大的障碍。 1. 流网络 一个流网络记作 \(G=(V,E)\),其中 \(V\) 表示点集,\(E\) 表示边集。对于 \(\fo

「网络流浅谈」最大流的应用

二分图匹配 考虑如何将二分图匹配问题,转化为流网络。设置 \(1\) 个汇点和源点,从源点向二分图一侧的每一个点连边,从另一侧向汇点连边,边权均为 \(1\),二分图中的边也全部加入,权值设为 \(1\)。这样,二分图的最大匹配等于流网络的最大流。 P2756 飞行员配对方案问题 题意:给定 \(1

浅谈k8s中cni0和docker0的关系和区别

最近在复习k8s网络方面的知识,查看之前学习时整理的笔记和文档还有过往自己总结的博客之后发现一个问题,就是在有关flannel和calico这两个k8s网络插件的文章和博客中,会涉及到cni0和docker0这两个网桥设备,但是都没有明确说明他们俩之间的关系,有的甚至将两者混为一谈,这也是我之前的学

[转帖]【网络小知识】之TCP IP 五元组(five-tuple/5-tuple)

为什么要分享TCP IP 5元组(five-tuple/5-tuple的知识? 最近在进行深度分析过程中,听到某些资深人士提到了5元组这个概念,觉得很高大尚,去搜索了一圈,发现都是些非常浅显的知识,对于tcp ip 5元组,7元组有什么用没有提及,也没有五元组的英文,导致英文资料检索过程中饶了一圈。

500代码行代码手写docker-设置网络命名空间

# (4)500代码行代码手写docker-设置网络命名空间 > 本系列教程主要是为了弄清楚容器化的原理,纸上得来终觉浅,绝知此事要躬行,理论始终不及动手实践来的深刻,所以这个系列会用go语言实现一个类似docker的容器化功能,最终能够容器化的运行一个进程。 本章的源码已经上传到github,地址

[转帖]张磊:浅谈容器网络

https://zhuanlan.zhihu.com/p/595014129 你好,我是张磊。今天我和你分享的主题是:浅谈容器网络。 在前面讲解容器基础时,我曾经提到过一个Linux容器能看见的“网络栈”,实际上是被隔离在它自己的Network Namespace当中的。 而所谓“网络栈”,就包括了

算法学习笔记(8): 网络流

# 网络流 > 网络流是一个博大精深的一个话题…… ## 箕(基)畚(本)知识 文章链接:[基本知识](https://www.cnblogs.com/jeefy/p/17050220.html) ## 网络最大流 文章链接:[网络最大流](https://www.cnblogs.com/jeefy

算法学习笔记(8.0): 网络流前置知识

网络流基础 网络流合集链接:网络流 网络 $G = (V, E)$ 实际上是一张有向图 对于图中每一条有向边 $(x, y) \in E$ 都有一个给定的容量 $c(x, y)$ 特别的,若 $(x,y) \notin E$ , 则 $c(x, y) = 0$ 图中还有两个指定的特殊结点,$S, T