【OpenVINO™】在 C# 中使用OpenVINO™ 部署PP-YOLOE实现物体检测

openvino,pp,yoloe · 浏览次数 : 11

小编点评

**Step 5: Process input images** - Load the input image using `cv2.imread()` function. - Perform object detection using `PPYoloeDet` class with the loaded model. - Generate a detection result image. **Step 6: Visualize detection results** - Use `Visualize.draw_det_result()` function to draw bounding boxes and labels on the input image. - Display the detection result image using `cv2.imshow()`. **Step 7: Get OpenVINO runtime version** - Initialize OpenVINO runtime version using `Ov.get_openvino_version()`. **Overall Code Flow:** 1. Load model and image files. 2. Get OpenVINO runtime version. 3. Start RT-DETR model inference. 4. Perform object detection and generate detection result. 5. Visualize detection results. 6. Get OpenVINO runtime version. **Usage:** 1. Download and extract the model and image files. 2. Create a `Program.cs` file with the following code: ```csharp using OpenVINO.opencvsharp; static void Main(string[] args) { // Set model path, image path, and inference device string modelPath = ""; string imagePath = ""; string device = ""; // Run the model inference function ppyoloe_det(modelPath, imagePath, device); } ``` 3. Build and run the program. **Note:** - The `ppyoloe_det()` function requires the model and image files to be placed in the same directory as the program. - You can adjust the model path, image path, and device name in the code.

正文

 前言

OpenVINO™ C# API 是一个 OpenVINO™ 的 .Net wrapper,应用最新的 OpenVINO™ 库开发,通过 OpenVINO™ C API 实现 .Net 对 OpenVINO™ Runtime 调用,使用习惯与 OpenVINO™ C++ API 一致。OpenVINO™ C# API 由于是基于 OpenVINO™ 开发,所支持的平台与 OpenVINO™ 完全一致,具体信息可以参考 OpenVINO™。通过使用 OpenVINO™ C# API,可以在 .NET、.NET Framework等框架下使用 C# 语言实现深度学习模型在指定平台推理加速。

OpenVINO™ C# API 项目链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API.git

项目源码链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples.git

1. 简介

   PP-YOLOE是基于PP-YOLOv2的优秀单级无锚模型,超越了各种流行的YOLO模型。PP-YOLOE有一系列型号,命名为s/m/l/x,通过宽度乘数和深度乘数进行配置。PP-YOLOE避免使用特殊的运算符,如可变形卷积或矩阵NMS,以便友好地部署在各种硬件上。 在本文中,我们将使用OpenVINO™ C# API 部署 PP-YOLOE实现物体检测。

2. 项目环境与依赖

  该项目中所需依赖已经支持通过NuGet Package进行安装,在该项目中,需要安装以下NuGet Package:

  • OpenVINO C# API NuGet Package:
OpenVINO.CSharp.API
OpenVINO.runtime.win
OpenVINO.CSharp.API.Extensions
OpenVINO.CSharp.API.Extensions.OpenCvSharp
  • OpenCvSharp NuGet Package:
OpenCvSharp4
OpenCvSharp4.Extensions
OpenCvSharp4.runtime.win

3. 项目输出

  项目使用的是控制台输出,运行后输出如下所示:

<00:00:00> Sending http request to https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Model/ppyoloe_plus_crn_l_80e_coco.tar.
<00:00:02> Http Response Accquired.
<00:00:02> Total download length is 199.68 Mb.
<00:00:02> Download Started.
<00:00:02> File created.
<00:02:03> Downloading: [■■■■■■■■■■] 100% <00:02:03 1.81 Mb/s> 199.68 Mb/199.68 Mb downloaded.
<00:02:03> File Downloaded, saved in E:\GitSpace\OpenVINO-CSharp-API-Samples\model_samples\ppyoloe\ppyoloe_opencvsharp\bin\Release\net6.0\model\ppyoloe_plus_crn_l_80e_coco.tar.
<00:00:00> Sending http request to https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Image/test_det_02.jpg.
<00:00:02> Http Response Accquired.
<00:00:02> Total download length is 0.16 Mb.
<00:00:02> Download Started.
<00:00:02> File created.
<00:00:02> Downloading: [■■■■■■■■■■] 100% <00:00:02 0.06 Mb/s> 0.16 Mb/0.16 Mb downloaded.
<00:00:02> File Downloaded, saved in E:\GitSpace\OpenVINO-CSharp-API-Samples\model_samples\ppyoloe\ppyoloe_opencvsharp\bin\Release\net6.0\model\test_image.jpg.
[ INFO ] Inference device: CPU
[ INFO ] Start RT-DETR model inference.
[ INFO ] 1. Initialize OpenVINO Runtime Core success, time spend: 4.5204ms.
[ INFO ] 2. Read inference model success, time spend: 228.4451ms.
[ INFO ] Inference Model
[ INFO ]   Model name: Model0
[ INFO ]   Input:
[ INFO ]      name: scale_factor
[ INFO ]      type: float
[ INFO ]      shape: Shape : {?,2}
[ INFO ]      name: image
[ INFO ]      type: float
[ INFO ]      shape: Shape : {?,3,640,640}
[ INFO ]   Output:
[ INFO ]      name: multiclass_nms3_0.tmp_0
[ INFO ]      type: float
[ INFO ]      shape: Shape : {?,6}
[ INFO ]      name: multiclass_nms3_0.tmp_2
[ INFO ]      type: int32_t
[ INFO ]      shape: Shape : {?}
[ INFO ] 3. Loading a model to the device success, time spend:501.0716ms.
[ INFO ] 4. Create an infer request success, time spend:0.2663ms.
[ INFO ] 5. Process input images success, time spend:30.1001ms.
[ INFO ] 6. Set up input data success, time spend:2.3631ms.
[ INFO ] 7. Do inference synchronously success, time spend:286.1085ms.
[ INFO ] 8. Get infer result data success, time spend:0.5189ms.
[ INFO ] 9. Process reault  success, time spend:0.4425ms.
[ INFO ] The result save to E:\GitSpace\OpenVINO-CSharp-API-Samples\model_samples\ppyoloe\ppyoloe_opencvsharp\bin\Release\net6.0\model\test_image_result.jpg

  图像预测结果如下图所示:

image-20240505205735624

4. 代码展示

  以下为嘛中所使用的命名空间代码:

using OpenCvSharp.Dnn;
using OpenCvSharp;
using OpenVinoSharp;
using OpenVinoSharp.Extensions;
using OpenVinoSharp.Extensions.utility;
using System.Runtime.InteropServices;
using OpenVinoSharp.preprocess;
using OpenVinoSharp.Extensions.model;
using OpenVinoSharp.Extensions.result;
using OpenVinoSharp.Extensions.process;

namespace ppyoloe_opencvsharp
{
    internal class Program
    {  
    	....
    }
}

  下面为定义的模型预测代码:

  • 一般预测流程:
static void ppyoloe_det(string model_path, string image_path, string device)
{
    // -------- Step 1. Initialize OpenVINO Runtime Core --------
    Core core = new Core();
    // -------- Step 2. Read inference model --------
    Model model = core.read_model(model_path);
    OvExtensions.printf_model_info(model);
    // -------- Step 3. Loading a model to the device --------
    CompiledModel compiled_model = core.compile_model(model, device);
    // -------- Step 4. Create an infer request --------
    InferRequest infer_request = compiled_model.create_infer_request();
    // -------- Step 5. Process input images --------
    Mat image = new Mat(image_path); // Read image by opencvsharp
    float[] factor = new float[] { 640.0f / (float)image.Rows, 640.0f / (float)image.Cols };
    float[] im_shape = new float[] { 640.0f, 640.0f };
    Mat input_mat = CvDnn.BlobFromImage(image, 1.0 / 255.0, new OpenCvSharp.Size(640, 640), 0, true, false);
    float[] input_data = new float[640 * 640 * 3];
    Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
    // -------- Step 6. Set up input data --------
    Tensor input_tensor_data = infer_request.get_tensor("image");
    input_tensor_data.set_shape(new Shape(1, 3, 640, 640));
    input_tensor_data.set_data<float>(input_data);
    Tensor input_tensor_factor = infer_request.get_tensor("scale_factor");
    input_tensor_factor.set_shape(new Shape(1, 2));
    input_tensor_factor.set_data<float>(factor);
    // -------- Step 7. Do inference synchronously --------
    infer_request.infer();
    // -------- Step 8. Get infer result data --------
    Tensor output_tensor = infer_request.get_output_tensor(0);
    int output_length = (int)output_tensor.get_size();
    float[] output_data = output_tensor.get_data<float>(output_length);
    // -------- Step 9. Process reault  --------
    List<Rect> position_boxes = new List<Rect>();
    List<int> class_ids = new List<int>();
    List<float> confidences = new List<float>();
    for (int i = 0; i < 300; ++i)
    {
        if (output_data[6 * i + 1] > 0.5)
        {
            class_ids.Add((int)output_data[6 * i]);
            confidences.Add(output_data[6 * i + 1]);
            position_boxes.Add(new Rect((int)output_data[6 * i + 2], (int)output_data[6 * i + 3],
                (int)(output_data[6 * i + 4] - output_data[6 * i + 2]),
                (int)(output_data[6 * i + 5] - output_data[6 * i + 3])));
        }
    }
    for (int index = 0; index < class_ids.Count; index++)
    {
        Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
        Cv2.Rectangle(image, new OpenCvSharp.Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y + 30),
            new OpenCvSharp.Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
        Cv2.PutText(image, class_ids[index] + "-" + confidences[index].ToString("0.00"),
            new OpenCvSharp.Point(position_boxes[index].X, position_boxes[index].Y + 25),
            HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 0), 2);
    }
    string output_path = Path.Combine(Path.GetDirectoryName(Path.GetFullPath(image_path)),
        Path.GetFileNameWithoutExtension(image_path) + "_result.jpg");
    Cv2.ImWrite(output_path, image);
    Slog.INFO("The result save to " + output_path);
    Cv2.ImShow("Result", image);
    Cv2.WaitKey(0);
}
  • 编译预处理步骤到模型方式推理模型:
static void ppyoloe_det_with_process(string model_path, string image_path, string device)
{
    // -------- Step 1. Initialize OpenVINO Runtime Core --------
    Core core = new Core();
    // -------- Step 2. Read inference model --------
    Model model = core.read_model(model_path);
    OvExtensions.printf_model_info(model);
    PrePostProcessor processor = new PrePostProcessor(model);
    Tensor input_tensor_pro = new Tensor(new OvType(ElementType.U8), new Shape(1, 640, 640, 3));
    InputInfo input_info = processor.input("image");
    InputTensorInfo input_tensor_info = input_info.tensor();
    input_tensor_info.set_from(input_tensor_pro).set_layout(new Layout("NHWC")).set_color_format(ColorFormat.BGR);
    PreProcessSteps process_steps = input_info.preprocess();
    process_steps.convert_color(ColorFormat.RGB).resize(ResizeAlgorithm.RESIZE_LINEAR)
        .convert_element_type(new OvType(ElementType.F32)).scale(255.0f).convert_layout(new Layout("NCHW"));
    Model new_model = processor.build();
    // -------- Step 3. Loading a model to the device --------
    CompiledModel compiled_model = core.compile_model(new_model, device);
    // -------- Step 4. Create an infer request --------
    InferRequest infer_request = compiled_model.create_infer_request();
    // -------- Step 5. Process input images --------
    Mat image = new Mat(image_path); // Read image by opencvsharp
    Mat input_image = new Mat();
    Cv2.Resize(image, input_image, new OpenCvSharp.Size(640, 640));
    float[] factor = new float[] { 640.0f / (float)image.Rows, 640.0f / (float)image.Cols };
    float[] im_shape = new float[] { 640.0f, 640.0f };
    // -------- Step 6. Set up input data --------
    Tensor input_tensor_data = infer_request.get_tensor("image");
    byte[] input_data = new byte[3 * 640 * 640];
    Marshal.Copy(input_image.Ptr(0), input_data, 0, input_data.Length);
    IntPtr destination = input_tensor_data.data();
    Marshal.Copy(input_data, 0, destination, input_data.Length);
    Tensor input_tensor_factor = infer_request.get_tensor("scale_factor");
    input_tensor_factor.set_shape(new Shape(1, 2));
    input_tensor_factor.set_data<float>(factor);
    // -------- Step 7. Do inference synchronously --------
    infer_request.infer();
    // -------- Step 8. Get infer result data --------
    Tensor output_tensor = infer_request.get_output_tensor(0);
    int output_length = (int)output_tensor.get_size();
    float[] output_data = output_tensor.get_data<float>(output_length);
    // -------- Step 9. Process reault  --------
    List<Rect> position_boxes = new List<Rect>();
    List<int> class_ids = new List<int>();
    List<float> confidences = new List<float>();

    for (int i = 0; i < 300; ++i)
    {
        if (output_data[6 * i + 1] > 0.5)
        {
            class_ids.Add((int)output_data[6 * i]);
            confidences.Add(output_data[6 * i + 1]);
            position_boxes.Add(new Rect((int)output_data[6 * i + 2], (int)output_data[6 * i + 3],
                (int)(output_data[6 * i + 4] - output_data[6 * i + 2]),
                (int)(output_data[6 * i + 5] - output_data[6 * i + 3])));
        }
    }
    for (int index = 0; index < class_ids.Count; index++)
    {
        Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
        Cv2.Rectangle(image, new OpenCvSharp.Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y + 30),
            new OpenCvSharp.Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
        Cv2.PutText(image, class_ids[index] + "-" + confidences[index].ToString("0.00"),
            new OpenCvSharp.Point(position_boxes[index].X, position_boxes[index].Y + 25),
            HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 0), 2);
    }
    string output_path = Path.Combine(Path.GetDirectoryName(Path.GetFullPath(image_path)),
        Path.GetFileNameWithoutExtension(image_path) + "_result.jpg");
    Cv2.ImWrite(output_path, image);
    Slog.INFO("The result save to " + output_path);
    Cv2.ImShow("Result", image);
    Cv2.WaitKey(0);
}

  • 使用封装的方法:
static void ppyoloe_det_using_extensions(string model_path, string image_path, string device)
{
    PPYoloeConfig config = new PPYoloeConfig();
    config.set_model(model_path);
    PPYoloeDet det = new PPYoloeDet(config);
    Mat image = Cv2.ImRead(image_path);
    DetResult result = det.predict(image);
    Mat result_im = Visualize.draw_det_result(result, image);
    Cv2.ImShow("Result", result_im);
    Cv2.WaitKey(0);
}

  下面为程序运行的主函数代码,该代码会下载转换好的预测模型,并调用预测方法进行预测:

static void Main(string[] args)
{
    string model_path = "";
    string image_path = "";
    string device = "CPU";
    if (args.Length == 0)
    {
        if (!Directory.Exists("./model"))
        {
            Directory.CreateDirectory("./model");
        }
        if (!File.Exists("./model/model.pdiparams")
            && !File.Exists("./model/model.pdmodel"))
        {
            if (!File.Exists("./model/ppyoloe_plus_crn_l_80e_coco.tar"))
            {
                _ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Model/ppyoloe_plus_crn_l_80e_coco.tar",
                    "./model/ppyoloe_plus_crn_l_80e_coco.tar").Result;
            }
            Download.unzip("./model/ppyoloe_plus_crn_l_80e_coco.tar", "./model/");
        }

        if (!File.Exists("./model/test_image.jpg"))
        {
            _ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Image/test_det_02.jpg",
                "./model/test_image.jpg").Result;
        }
        model_path = "./model/model.pdmodel";
        image_path = "./model/test_image.jpg";
    }
    else if (args.Length >= 2)
    {
        model_path = args[0];
        image_path = args[1];
        device = args[2];
    }
    else
    {
        Console.WriteLine("Please enter the correct command parameters, for example:");
        Console.WriteLine("> 1. dotnet run");
        Console.WriteLine("> 2. dotnet run <model path> <image path> <device name>");
    }
    // -------- Get OpenVINO runtime version --------

    OpenVinoSharp.Version version = Ov.get_openvino_version();

    Slog.INFO("---- OpenVINO INFO----");
    Slog.INFO("Description : " + version.description);
    Slog.INFO("Build number: " + version.buildNumber);

    Slog.INFO("Predict model files: " + model_path);
    Slog.INFO("Predict image  files: " + image_path);
    Slog.INFO("Inference device: " + device);
    Slog.INFO("Start RT-DETR model inference.");

    ppyoloe_det(model_path, image_path, device);
    //ppyoloe_det_with_process(model_path, image_path, device);
    //ppyoloe_det_using_extensions(model_path, image_path, device);
}

5. 总结

  在该项目中,我们结合之前开发的 OpenVINO™ C# API 项目部署PP-YOLOE模型,实现物体检测。

  • 项目完整代码链接为:
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/ppyoloe/ppyoloe_opencvsharp/Program.cs
  • 为了方便EmguCV用户使用需求,同时开发了EmguCV版本,项目链接为:
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/ppyoloe/ppyoloe_emgucv/Program.cs

最后如果各位开发者在使用中有任何问题,欢迎大家与我联系。

与【OpenVINO™】在 C# 中使用OpenVINO™ 部署PP-YOLOE实现物体检测相似的内容:

【OpenVINO™】在 C# 中使用OpenVINO™ 部署PP-YOLOE实现物体检测

PP-YOLOE是基于PP-YOLOv2的优秀单级无锚模型,超越了各种流行的YOLO模型。PP-YOLOE有一系列型号,命名为s/m/l/x,通过宽度乘数和深度乘数进行配置。PP-YOLOE避免使用特殊的运算符,如可变形卷积或矩阵NMS,以便友好地部署在各种硬件上。 在本文中,我们将使用OpenVI...

【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标

最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策略,从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了...

【OpenVINO™】基于 C# 和 OpenVINO™ 部署 Blazeface 模型实现人脸检测

Blazeface模型是Google推出的一款专为移动GPU推理量身定制的轻量级且性能卓越的人脸检测器,BlazeFace 在旗舰移动设备上以200-1000 + FPS的速度运行。 在本文中,我们将使用OpenVINO™ C# API 部署 Blazeface 实现人脸检测。

【OpenVINO™】使用OpenVINO™ C# API 部署 YOLO-World实现实时开放词汇对象检测

YOLO-World是一个融合了实时目标检测与增强现实(AR)技术的创新平台,旨在将现实世界与数字世界无缝对接。该平台以YOLO(You Only Look Once)算法为核心,实现了对视频中物体的快速准确识别,并通过AR技术将虚拟元素与真实场景相结合,为用户带来沉浸式的交互体验。在本文中,我们将...

【OpenVINO™】YOLOv10在CPU上也能实现50+FPS推理—使用OpenVINO C++部署YOLOv10

英特尔发行版 OpenVINO™ 工具套件基于 oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法,通过消除NMS、...