助听器降噪神经网络模型

· 浏览次数 : 0

小编点评

**软硬件实现:** * 500 小时的语音数据集 * 2 个 LSTM 层 * FC 层 * Sigmoid 激活层 * 1D-Conv 层 * 1D-Conv 层的输出作为时间域特征表示 **算法架构:** 1. STFT 和 FC 层分析和合成基础 2. FC 层和 sigmoid 激活层预测掩模乘以混合的幅度 3. 两个 LSTM 层,每个层包含 128 个单元 4. 25% 的 dropout 在 LSTM 层之间应用 5. Adam 优化器,学习率为 10e-3 6. 梯度范数裁剪为 3 **训练目标:** * 减少噪声混响环境中所有客观测量的损失 * 避免输入混合和预测的干净语音之间可能存在的电平偏移 **性能:** * MOS 绝对改进为 0.22

正文

具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能
本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础结合在堆栈网络方法中,参数少于一百万个。该模型使用挑战组织者提供的 500 小时的嘈杂语音进行训练。 该网络能够进行实时处理(一帧输入,一帧输 出)并达到有竞争力的结果。将这两种类型的信号变换结合起来,使 DTLN 能够从幅度谱中稳健地提取信息,并从学习的特征基础中合并相位信息。该方法显示了最先进的性能,并且以平均意见得分 (MOS) 计绝对优于 DNS-Challenge 基线 0.24 分。

噪声抑制任务是语音增强领域的一个重要学科, 随着深度神经网络的兴起,提出了几种基于深度模型的音频处理新方法[1,2,3,4]。然而,这些通常是为离线处理而开发的,不需要考虑实时性。当使用神经网络设计基于框架的算法时,递归神经网络 (RNN)是常见的选择。 RNN 在语音增强 [7, 8] 和语音分离 [9, 10, 11] 领域取得了令人信服的结果。长短期记忆网络(LSTM)[12]代表了分离领域的最先进技术[13]。性能最佳的网络通常是通过使用双向 LSTM 以非因果方式构建的。

本文介绍的堆叠双信号变换 LSTM 网络架构如下:

本文介绍的堆叠双信号变换 LSTM 网络架构具有两个分离核心,其中包含两个 LSTM 层,后跟一个全连接(FC)层和一个用于创建掩码输出的 sigmoid 激活层。第一个分离核心使用 STFT 分析和合成基础。FC 层和 sigmoid 激活预测的掩模乘以混合的幅度,并使用输入混合的相位转换回时域。来自第一个网络的帧由 1D-Conv 层处理以创建特征表示。特征表示在被馈送到第二个分离核心之前由归一化层进行处理。第二个核的预测掩模与特征表示的非标准化版本相乘。结果用作 1D-Conv 层的输入,用于将估计表示转换回时域。在最后一步中,通过重叠相加过程重建信号。

训练数据集是根据 DNS 挑战赛提供的音频数据创建的。语音数据是 Lib-rispeech 语料库 [23] 的一 部分,噪声信号源自 Audioset 语料库 [24]、 Freesound 和 DEMAND 语料库 [25]。使用提供的脚本创建了 500 小时的数据。默认 SNR 范围(0 至 40 dB)更改为 -5 至 25 dB,以包含负 SNR 并限制总范围。为了覆盖更细粒度的 SNR 分布,SNR 级别的数量从 5 增加到 30。所有其他参数保持不变。 500 小时的数据集分为训练数据(400 小时)和交叉验证数据(100 小时),这对应于常见的 80:20% 分割。所有训练数据均以 16 kHz 采样。挑战组织者还提供了一个测试集,其中包含四个不同类别, 每个类别包含 300 个样本。这些类别是无混响的合成剪辑、有混响的合成剪辑、Microsoft 内部收集的真实录音和 Audioset 的真实录音。合成数据取自格拉茨大学的干净语音数据集 [26]。合成数据的 SNR在0到25dB SNR之间随机分布。混响数据的脉冲响应是在 Microsoft 的多个房间中测量的,混响时间 (RT˯˩) 范围为 300 到 1300 毫秒。此外,组织者创建了盲测集,并在 ITU P-808 [27] 设置中进行评估。 [14] 中提供了训练和测试集的完整细节。为了正确估计噪声混响环境中所有客观测量的性能, 使用了 WHAMR 语料库 [19] 的混响单扬声器和噪声测试集,采样频率为 16 kHz。

本文中的 DTLN 在其四个 LSTM 层中各有 128 个单元。帧大小为 32 ms,移位为 8 ms。 FFT 大小为 512,等于帧长度。用于创建学习特征表示的 1D-Conv 层有 256 个过滤器。在训练期间,在 LSTM 层之间应用 25% 的 dropout。使用 Adam 优化器,学习率为 10e-3,梯度范数裁剪为 3。如果验证集上的损失在十个时期内没有减少,则应用提前停止。该模型以 32 的批量大小进行训练,每个样本的长度为 15 秒。 Nvidia RTX 2080 TI 上一个训练周期的平均时间约为 21 分钟。使用尺度敏感的负 SNR [20] 作为训练目标。与尺度不变信噪比(SI-SNR)[11]相比,它应该避免输入混合和预测的干净语音之间可能存在的电平偏移,这在实时处理系统中是可取的。此外, 由于它在时域中操作,因此可以隐式地考虑相位信息。相比之下,语音信号的估计幅度和干净幅度 STFT 之间的均方误差作为训练目标无法在优化过程中使用任何相位信息。

模型效果的比较

本文介绍了一种基于堆叠双信号变换 LSTM 网络 的噪声抑制方法,用于实时语音增强,并在大规 模数据集上进行训练。我们能够展示在堆叠网络 方法中使用两种类型的分析和综合基础的优势。 DTLN 模型在嘈杂的混响环境中运行稳健。尽管 我们将基本训练设置与简单的架构相结合,但我 们观察到相对于噪声条件的所有主观评估在 MOS 方面的绝对改进为 0.22。

与助听器降噪神经网络模型相似的内容:

助听器降噪神经网络模型

具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础

6个优化策略,助你降低K8S成本

Kubernetes 早已成为容器编排引擎的事实标准,而随着 Kubernetes 环境的复杂性持续增长,成本也在不断攀升。CNCF 发布的调查报告《Kubernetes 的 FinOps》显示,68%的受访者表示 Kubernetes 开销正在上涨,并且一半的人所在的组织经历了每年超过20%的开销

解码技术债:AI代码助手与智能体的革新之道

技术债可能来源于多种原因,比如时间压力、资源限制、技术选型不当等。它可以表现为代码中的临时性修补、未能彻底解决的设计问题、缺乏文档或测试覆盖等。虽然技术债可以帮助快速推进项目进度,但长期来看,它会增加软件维护的成本和风险,降低系统的稳定性和可维护性。

基于助听器开发的一种高效的语音增强神经网络

现代语音增强算法利用大量递归神经网络(RNNs)实现了显著的噪声抑制。然而,大型RNN限制了助听器硬件(hearing aid hardware,HW)的实际部署,这些硬件是电池供电的,运行在资源受限的微控制器单元(microcontroller units,MCU)上,内存和计算能力有限。在这项工

助力618-Y的混沌实践之路

混沌工程,是一种提高技术架构弹性能力的复杂技术手段,旨在将故障扼杀在襁褓之中,也就是在故障造成中断之前将它们识别出来。通过主动制造故障,测试系统在各种压力下的行为,识别并修复故障问题,避免造成严重后果。

Java助力加固Excel文件,保障数据安全

前言 Excel文件保护是常用的一种功能,文件保护主要有三种: 添加密码,如果没有密码不允许打开文件。 添加密码,如果没有密码,不能修改文件,但可以打开,只读以及另存文件。 只读推荐,通常推荐打开Excel文件的用户使用只读模式打开,这种方式仅是一种提示,并非强行保护文件。 给Excel添加保护 情

NumPy 差分、最小公倍数、最大公约数、三角函数详解

NumPy 助你处理数学问题:计算序列的差分用`np.diff()`,示例返回`[5, 10, -20]`;找最小公倍数(LCM)用`np.lcm()`,数组示例返回`18`;最大公约数(GCD)用`np.gcd.reduce()`,数组示例返回`4`;三角函数如`np.sin()`,`np.deg...

ChatGPT 助力开发人员改进代码的5个方式

ChatGPT是一个由 OpenAI训练的大型语言模型,本文将向您展示如何使用 ChatGPT 帮助开发人员完成从编码到文档和测试等各种任务。

低代码助力微信小程序对接,提升开发效率

本文由葡萄城技术团队原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 微信小程序相信大家都用过,相较于APP,微信小程序的优势在于其便捷性,只需要下载一个微信就可以访问所有的小程序,因此许多开发者也逐渐将自己开发的系统部署到微信小程序上以供

华为云助推武水集团项目成功入选住建部“智慧水务”典型案例!

摘要:目前,武汉市已将该平台推广复制到该市其他供水主体,华为云也将继续携手助力,为武汉市营商环境高质量得分提供有力支撑。 近日,住房和城乡建设部科技与产业化发展中心发布《关于发布2022年智慧水务典型案例的通知》,饮用水安全保障类、水环境综合治理类以及综合类的18个项目入选2022年智慧水务典型案例