得物 ZooKeeper SLA 也可以 99.99%

zookeeper,sla · 浏览次数 : 0

小编点评

**性能优化对 ZooKeeper 的影响** **1. 使用  BitSet 和 ConcurrentHashMap 优化监视器管理** * 使用  BitSet  来记录已观察的 ZNode,并使用 ConcurrentHashMap 来快速定位和删除监视器。 * 优化了触发监视器的性能,减少了对监视器的遍历次数。 **2. 降低节点之间的选举和数据同步时间** * 使用更高效的数据结构和减少锁的使用范围,优化了节点之间的通信。 * 降低了选举和数据同步等指标的响应时间。 **3. 减少内存占用** * 使用了  SnapshotCount 参数降低 Snapshot 数量,显著降低磁盘压力。 * 将 dataDir 和 dataLogDir 挂载到不同的磁盘上,以减少对 ZooKeeper 的访问。 **4. 提升 SLAs** * 通过多个优化,WatchManagerOptimized 的性能提升了数量级。 * 降低了选举时间、读延迟、 proposal 处理时间和数据传播延迟。 **5. 减少配置参数** * 将 SnapshotCount 参数设置至 500,000,可以显著降低磁盘压力。 * 使用 JDK 17 或更高版本使用 G1 垃圾回收器。

正文

1. 背景

ZooKeeper(ZK)是一个诞生于 2007 年的分布式应用程序协调服务。尽管出于一些特殊的历史原因,许多业务场景仍然不得不依赖它。比如,Kafka、任务调度等。特别是在 Flink 混合部署 ETCD 解耦 时,业务方曾要求绝对的稳定性,并强烈建议不要使用自建的 ZooKeeper。出于对稳定性的考量,采用了阿里的 MSE-ZK。自从 2022 年 9 月份开始使用至今,得物技术团队没有遇到任何稳定性问题,SLA 的可靠性确实达到了 99.99%。

在 2023 年,部分业务使用了自建的 ZooKeeper(ZK)集群,然后使用过程中 ZK 出现了几次波动,随后得物 SRE 开始接管部分自建集群,并进行了几轮稳定性加固的尝试。接管过程中得物发现 ZooKeeper 在运行一段时间后,内存占用率会不断增加,容易导致内存耗尽(OOM)的问题。得物技术团队对这一现象非常好奇,因此也参与了解决这个问题的探索过程。

2. 探索分析

2.1 确定方向

在排查问题时,非常幸运地发现了一个测试环境的故障现场,该集群中的两个节点恰好处于 OOM 的边缘状态。

有了故障现场,那么一般情况下距离成功终点只剩下 50%。内存偏高,按以往的经验来看,要么是非堆,要么是堆内有问题。从火焰图和 jstat 都能证实:是堆内的问题。

如图所示:说明 JVM 堆内存在某种资源占用了大量的内存,并且 FGC 都无法释放。

2.2 内存分析

为了探究 JVM 堆中内存占用分布,得物技术团队立即做了一个 JVM 堆 Dump。分析发现 JVM 内存被 childWatches 和 dataWatches 大量占用。

dataWatches:跟踪 znode 节点数据的变化。
childWatches:跟踪 znode 节点结构 (tree) 的变化。

childWatches 和 dataWatches 同源于 WatcherManager。

经过资料排查,发现 WatcherManager 主要负责管理 Watcher。ZooKeeper(ZK)客户端首先将 Watcher 注册到 ZooKeeper 服务器上,然后由 ZooKeeper 服务器使用 WatcherManager 来管理所有的 Watcher。当某个 Znode 的数据发生变更时,WatchManager 将触发相应的 Watcher,并通过与订阅该 Znode 的 ZooKeeper 客户端的 socket 进行通信。随后,客户端的 Watch 管理器将触发相关的 Watcher 回调,以执行相应的处理逻辑,从而完成整个数据发布/订阅流程。

进一步分析 WatchManager,成员变量 Watch2Path、WatchTables 内存占比高达 (18.88+9.47)/31.82 = 90%。

而 WatchTables、Watch2Path 存储的是 ZNode 与 Watcher 正反映射关系,存储结构图所示:

WatchTables【正向查询表】HashMap>
场景:某个 ZNode 发生变化,订阅该 ZNode 的 Watcher 会收到通知。
逻辑:用该 ZNode,通过 WatchTables 找到对应的所有 Watcher 列表,然后逐个发通知。
Watch2Paths【逆向查询表】
HashMap
场景:统计某个 Watcher 到底订阅了哪些 ZNode。
逻辑:用该Watcher,通过 Watch2Paths 找到对应的所有 ZNode 列表。
Watcher 本质是 NIOServerCnxn,可以理解成一个连接会话。

如果 ZNode、和 Watcher 的数量都比较多,并且客户端订阅 ZNode 也比较多,甚至全量订阅。这两张 Hash 表记录的关系就会呈指数增长,最终会是一个天量!

当全订阅时,如图演示:

当 ZNode数量:3,Watcher 数量:2 WatchTables 和 Watch2Paths 会各有 6 条关系。

当 ZNode数量:4,Watcher 数量:3 WatchTables 和 Watch2Paths 会各有 12 条关系。

通过监控发现,异常的 ZK-Node。ZNode 数量大概有 20W,Watcher 数量是5000。而 Watcher 与 ZNode 的关系条数达到了 1 亿。

如果存储每条关系的需要 1 个 HashMap&Node(32Byte),由于是两个关系表,double 一下。那么其它都不要计算,光是这个“壳”,就需要 2*10000^2*32/1024^3 = 5.9GB 的无效内存开销。

2.3 意外发现

通过上面的分析可以得知,需要避免客户端出现对所有 ZNode 进行全面订阅的情况。然而,实际情况是,许多业务代码确实存在这样的逻辑,从 ZTree 的根节点开始遍历所有 ZNode,并对它们进行全面订阅。

或许能够说服一部分业务方进行改进,但无法强制约束所有业务方的使用方式。因此,解决这个问题的思路在于监控和预防。然而,遗憾的是,ZK 本身并不支持这样的功能,这就需要对 ZK 源码进行修改。

通过对源码的跟踪和分析,发现问题的根源又指向了 WatchManager,并且仔细研究了这个类的逻辑细节。经过深入理解后,发现这段代码的质量似乎像是由应届毕业生编写的,存在大量线程和锁的不恰当使用问题。通过查看 Git 记录,发现这个问题可以追溯到 2007 年。然而,令人振奋的是,在这一段时间内,出现了 WatchManagerOptimized(2018),通过搜索 ZK 社区的资料,发现了 [ZOOKEEPER-1177],即在 2011 年,ZK 社区就已经意识到了大量 Watch 导致的内存占用问题,并最终在 2018 年提供了解决方案。正是这个WatchManagerOptimized 的功劳,看来 ZK 社区早就进行了优化。

有趣的是,ZK 默认情况下并未启用这个类,即使在最新的 3.9.X 版本中,默认仍然使用 WatchManager。也许是因为 ZK 年代久远,渐渐地人们对其关注度降低了。通过询问阿里的同事,确认了 MSE-ZK 也启用了 WatchManagerOptimized,这进一步证实了得物技术团队关注的方向是正确的。

2.4 优化探索

锁的优化

在默认版本中,使用的 HashSet 是线程不安全的。在这个版本中,相关操作方法如 addWatch、removeWatcher 和 triggerWatch 都是通过在方法上添加了 synchronized 重型锁来实现的。而在优化版中,采用了 ConcurrentHashMap 和 ReadWriteLock 的组合,以更精细化地使用锁机制。这样一来,在添加 Watch 和触发 Watch 的过程中能够实现更高效的操作。

存储优化

这是关注的重点。从 WatchManager 的分析可以看出,使用 WatchTables 和 Watch2Paths 存储效率并不高。如果 ZNode 的订阅关系较多,将会额外消耗大量无效的内存。

感到惊喜的是,WatchManagerOptimized 在这里使用了“黑科技” -> 位图。

利用位图将关系存储进行了大量的压缩,实现了降维优化。

Java BitSet 主要特点:

  • 空间高效:BitSet 使用位数组存储数据,比标准的布尔数组需要更少的空间。
  • 处理快速:进行位操作(如 AND、OR、XOR、翻转)通常比相应的布尔逻辑操作更快。
  • 动态扩展:BitSet 的大小可以根据需要动态增长,以容纳更多的位。

BitSet 使用一个 long[] words 来存储数据,long 类型占 8 字节,64 位。数组中每个元素可以存储 64 个数据,数组中数据的存储顺序从左到右,从低位到高位。比如下图中的 BitSet 的 words 容量为 4,words[0] 从低位到高位分别表示数据 0~63 是否存在,words[1] 的低位到高位分别表示数据 64~127 是否存在,以此类推。其中 words[1] = 8,对应的二进制第 8 位为 1,说明此时 BitSet 中存储了一个数据 {67}。

WatchManagerOptimized 使用 BitMap 来存储所有的 Watcher。这样即便是存在1W的 Watcher。位图的内存消耗也只有8Byte*1W/64/1024=1.2KB。如果换成 HashSet ,则至少需要 32Byte*10000/1024=305KB,存储效率相差近 300 倍。

WatchManager.java:
private final Map<String, Set<Watcher>> watchTable = new HashMap<>();
private final Map<Watcher, Set<String>> watch2Paths = new HashMap<>();

 

WatchManagerOptimized.java:
private final ConcurrentHashMap<String, BitHashSet> pathWatches = new ConcurrentHashMap<String, BitHashSet>();
private final BitMap<Watcher> watcherBitIdMap = new BitMap<Watcher>();

ZNode到 Watcher 的映射存储,由 Map 换成了 ConcurrentHashMapBitHashSet>。也就是说不再存储 Set,而是用位图来存储位图索引值。

用 1W 的 ZNode,1W 的 Watcher,极端点走全订阅(所有的 Watcher 订阅所有的 ZNode),做存储效率 PK:

可以看到 11.7MB PK 5.9GB,内存的存储效率相差:516 倍

逻辑优化

添加监视器:两个版本都能够在常数时间内完成操作,但是优化版通过使用 ConcurrentHashMap 提供了更好的并发性能。

删除监视器:默认版可能需要遍历整个监视器集合来找到并删除监视器,导致时间复杂度为 O(n)。而优化版利用 BitSet 和 ConcurrentHashMap,在大多数情况下能够快速定位和删除监视器,O(1)。

触发监视器:默认版的复杂度较高,因为它需要对每个路径上的每个监视器进行操作。优化版通过更高效的数据结构和减少锁的使用范围,优化了触发监视器的性能。

3. 性能压测

3.1 JMH 微基准测试

ZooKeeper 3.6.4 源码编译, JMH micor 压测 WatchBench。

pathCount:表示测试中使用的 ZNode 路径数目。watchManagerClass:表示测试中使用的 WatchManager 实现类。
watcherCount:表示测试中使用的观察者(Watcher)数目。
Mode:表示测试的模式,这里是 avgt,表示平均运行时间。
Cnt:表示测试运行的次数。
Score:表示测试的得分,即平均运行时间。
Error:表示得分的误差范围。
Units:表示得分的单位,这里是毫秒/操作(ms/op)。
  • ZNode 与 Watcher 100 万条订阅关系,默认版本使用 50MB,优化版只需要 0.2MB,而且不会线性增加。
  • 添加 Watch,优化版(0.406 ms/op)比默认版(2.669 ms/op)提升 6.5 倍。
  • 大量触发Watch ,优化版(17.833 ms/op)比默认版(84.455 ms/op)提升 5 倍。

3.2 性能压测

接下来在一台机器 (32C 60G) 搭建一套 3 节点 ZooKeeper 3.6.4 使用优化版与默认版进行容量压测对比。

场景一:20W znode 短路径

Znode 短路径: /demo/znode1

场景二:20W znode 长路径

Znode 长路径: /sentinel-cluster/dev/xx-admin-interfaces/lock/_c_bb0832d5-67a5-48ab-8fe0-040b9ddea-lock/12

  • Watch 内存占用跟 ZNode 的 Path 长度有关。
  • Watch 的数量在默认版是线性上涨,在优化版中表现非常好,这对内存占用优化来说改善非常明显。

3.3 灰度测试

基于前面的基准测试和容量测试,优化版在大量 Watch 场景内存优化明显,接下来开始对测试环境的 ZK 集群进行灰度升级测试观察。

第一套 ZooKeeper 集群 & 收益

默认版

优化版

效果收益:

  • election_time (选举耗时):降低 60%
  • fsync_time (事务同步耗时):降低 75%
  • 内存占用:降低 91%

第二套 ZooKeeper 集群 & 收益

效果收益:

  • 内存:变更前 JVM Attach 响应无法响应,采集数据失败。
  • election_time(选举耗时):降低 64%。
  • max_latency(读延迟):降低 53%。
  • proposal_latency(选举处理提案延迟):1400000 ms --> 43 ms。
  • propagation_latency(数据的传播延迟):1400000 ms --> 43 ms。

第三套 ZooKeeper 集群 & 收益

默认版

优化版

效果收益:

  • 内存:节省 89%
  • election_time(选举耗时):降低 42%
  • max_latency(读延迟):降低 95%
  • proposal_latency(选举处理提案延迟):679999 ms --> 0.3 ms
  • propagation_latency(数据的传播延迟):928000 ms--> 5 ms

4. 总结

通过之前的基准测试、性能压测以及灰度测试,发现了 ZooKeeper 的 WatchManagerOptimized。这项优化不仅节省了内存,还通过锁的优化显著提高了节点之间的选举和数据同步等指标,从而增强了 ZooKeeper 的一致性。还与阿里 MSE 的同学进行了深度交流,各自在极端场景模拟压测,并达成了一致的看法:WatchManagerOptimized 对 ZooKeeper 的稳定性提升显著。总体而言,这项优化使得 ZooKeeper 的 SLA 提升了一个数量级。

ZooKeeper 有许多配置选项,但大部分情况下不需要调整。为提升系统稳定性,建议进行以下配置优化:

  • 将 dataDir(数据目录)和 dataLogDir(事务日志目录)分别挂载到不同的磁盘上,并使用高性能的块存储。
  • 对于 ZooKeeper 3.8 版本,建议使用 JDK 17 并启用 ZGC 垃圾回收器;而对于 3.5 和 3.6 版本,可使用 JDK 8 并启用 G1 垃圾回收器。针对这些版本,只需要简单配置 -Xms 和 -Xmx 即可。
  • 将 SnapshotCount 参数默认值 100,000 调整为 500,000,这样可以在高频率 ZNode 变动时显著降低磁盘压力。
  • 使用优化版的 Watch 管理器 WatchManagerOptimized。

原文链接

本文为阿里云原创内容,未经允许不得转载。

与得物 ZooKeeper SLA 也可以 99.99%相似的内容:

得物 ZooKeeper SLA 也可以 99.99%

在本文中,作者探讨了ZooKeeper(ZK)的一个内存占用问题,特别是当有大量的Watcher和ZNode时,导致的内存消耗。

influxdb得导出与导入

转载请注明出处: 1、备份元数据 基本语法: influxd backup 备份元数据,没有任何其他参数,备份将只转移当前状态的系统元数据到path-to-backup。path-to-backup为备份保存的目录,不存在会自动创建。 该备份会备份所有数据库以及所有

记录freeswitch的一个2833问题

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 运营商内部新老系统混用,互联互通的问题较多,其中以DTMF码的问题最多,花样也多。 环境 CentOS 7.9 freeswitch 1.10.7 问题描述 问题现象 正常的fs业务服务器,呼叫正常,部分呼叫报错DTMF收码失败。

记录一次fs通话无声的问题

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 fs的实际应用中,由于网络、配置等问题,经常会产生通话无声的问题。 环境 CentOS 7.9 freeswitch 1.10.7 问题描述 部署一台新服务器,作为SBC,对接B路,部署简图如下。 A -- fs1 -- fs2(f

Kafka 线上性能调优

Kafka 线上性能调优是一项综合工程,不仅仅是 Kafka 本身,还应该从硬件(存储、网络、CPU)以及操作系统方面来整体考量,首先我们要有一套生产部署方案,基于这套方案再进行调优,这样就有了可靠的底层保证,才能保证 Kafka 集群整体的稳定性。 1. 线上部署方案 1.1 操作系统 我们知道

跑得更快!华为云GaussDB以出色的性能守护“ERP的心脏”

摘要:GaussDB已经全面支撑起MetaERP,在包括库存服务在内的9大核心模块中稳定运行,端到端业务效率得到10倍提升。 本文分享自华为云社区《跑得更快!华为云GaussDB以出色的性能守护“ERP的心脏”》,作者:GaussDB 数据库。 ERP作为华为企业经营最核心的系统,伴随着华为20多年

Mysql数据库部分管理命令极简学习总结

背景 今天遇到一个得很奇怪的问题. Mysql一个运行时间很长的select阻塞了对select里面左连接表做create index 操作的SQL 当时感觉不应该, 一直以为读锁不会与独占更新锁互斥. 经过与公司数据库大牛沟通, 得出结论如下: 在mysql做ddl语句的时候一定要特别小心 sel

C#使用iKvm黑科技无缝接入JVM生态

前言 时间过得飞快,一转眼国庆假期也要过去了,再不更新博客就太咸鱼了…… 最近在开发AIHub的时候想找个C#能用的命名实体识别库,但一直没找到,AI生态方面C#确实不太丰富,这块还是得Python,但我又不想跟LLM一样用gRPC的方式来调用,感觉有点麻烦。 这时候发现好像JVM生态有不少这类NL

穷人版生产力工具,好用得飞起 「GitHub 热点速览」

被 GPT 和 OpenAI 刷屏了一个多月,现在 GitHub Trending 已经没有什么和 gpt 无关的项目了,但是好在总有优秀的开源项目拯救我的项目疲惫。像是贴心好用的

influxdb 中得 fields 与 tag 区别总结

本位为博主原创,转载请注明出处: 1.Field与Tag说明 在 InfluxDB 表结构中,field 和 tag 是用于存储数据的两种不同类型。 Field(字段): Field 用于存储实际的数值数据,例如温度、湿度等测量值。 Field 是可变的,可以随时间的推移而改变其值。 Field 的