如何使用Tushare+ Backtrader进行股票量化策略回测

tushare,backtrader · 浏览次数 : 0

小编点评

**数据预处理和RSI指标的添加** 1. 获取沪深300指数的历史数据。 2. 将日期转换为 datetime格式。 3. 创建数据源,包括 RSI 指标。 4. 定义策略类,实现 buy 和 sell 指标的逻辑。 5. 调用 BackTrader 库的 adddata 方法添加回测数据。 6. 设置初始资金、手续费和输出初始资金。 7. 运行策略并输出最终资金和图表。 **结果展示** BackTrader 展示了以下结果: * 历史量价曲线。 * RSI 指标的数值曲线。 *买卖点的标记。 * 资金曲线。 * 回撤线。 * NetValue 的数值曲线。 **示例代码** ```python import mplfinance as mpfhs300 cerebro = bt.Cerebro() cerebro.adddata(data) # 添加数据源 cerebro.addstrategy(RSI(period=14)) # 添加 RSI 指标 cerebro.broker.setcash(1000000.0) # 设置初始资金 cerebro.broker.setcommission(commission=0.001) # 设置佣金 print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # 输出初始资金 cerebro.run() # 运行策略 print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) # 输出最终资金 cerebro.plot() # 绘制图表 ```

正文

更多精彩内容,欢迎关注公众号:数量技术宅,也可添加技术宅个人微信号:sljsz01,与我交流。

典型股票量化回测流程

典型的股票量化策略回测流程包括以下几个步骤:

  1. 数据获取:首先需要获取所需的股票市场数据,包括股票价格、交易量、财务数据等。这些数据可以从金融数据供应商、交易所、财经网站或者专门的数据提供商处获取。

  2. 数据预处理:对获取到的数据进行预处理和清洗,以确保数据的质量和一致性。这包括去除异常值、处理缺失数据、调整股票价格(如复权处理)等。

  3. 策略开发:根据具体的量化策略目标,设计和开发相应的交易策略。这可能涉及技术指标的计算、信号生成规则的制定、风险管理规则的定义等。

  4. 回测执行:使用历史数据执行所开发的策略。按照时间顺序,逐个周期模拟交易决策,并记录每次交易的执行价格、成交量、手续费等信息。

  5. 绩效评估:根据回测结果评估策略的绩效表现。常见的评估指标包括累计收益、年化收益率、最大回撤、夏普比率等。此外,还可以进行风险敞口、交易频率等方面的分析。

上述流程中,1、2我们可以使用Tushare配合Pandas库来进行,而3、4、5步骤可以使用Backtrader库来完成。接下来,我们就来介绍Tushare和Backtrader在量化回测中的使用。

如何使用Tushare获取股票数据

Tushare是一个基于Python语言的开源金融数据接口包,提供了丰富的股票、期货、基金等金融数据获取功能。 Tushare为金融从业者和开发者提供了方便快捷的数据获取和处理工具,帮助他们进行金融数据分析和量化策略开发。

要安装和使用Tushare,我们需要按照以下步骤进行操作:

  1. 安装Python:首先,确保你的计算机上已经安装了Python。Tushare支持Python 3.x版本。

  2. 安装Tushare包:打开命令行终端(Windows用户可以使用命令提示符或PowerShell),输入以下命令安装Tushare包:

pip install tushare
  1. 这将自动从Python包索引(PyPI)下载并安装Tushare包及其依赖项。

  2. 获取Tushare的Token:在使用Tushare之前,你需要在Tushare官网(https://tushare.pro)注册一个账号,并获取API令牌(Token)。登录后,在用户中心页面可以找到你的Token。

  3. 使用Tushare:在Python中引入Tushare包,并使用你的Token进行初始化。以下是一个简单的示例代码:

import tushare as ts

# 初始化Tushare,替换YOUR_TOKEN为你的Token
ts.set_token('YOUR_TOKEN')

# 创建Tushare接口对象
pro = ts.pro_api()

# 调用Tushare接口函数,获取股票行情数据
data = pro.daily(ts_code='000001.SZ', start_date='20220101', end_date='20220131')

# 打印获取的数据
print(data)
  1. 在上面的示例中,首先使用set_token函数设置你的Token,然后使用pro_api函数创建Tushare接口对象。接下来,可以使用各种Tushare接口函数(如daily)获取不同类型的金融数据。

    请根据Tushare的文档(https://tushare.pro/document/2)和API参考(https://tushare.pro/document/1)查看更多的接口函数和详细用法。

需要注意,上述示例中的Tushare Pro的接口需要付费订阅才能访问高级数据。如果你想省去注册和付费的麻烦,而且只取有限的简单数据做个尝试,可以使用Tushare的免费接口。免费接口的示例代码更简单

import tushare as ts
# 获取沪深300指数从2014年1月1日到最新的行情数据
hs300 = ts.get_k_data('hs300', start='2014-01-01')

由此,我们就获取到了免费版本的沪深300指数从2014年1月1日到最新的日K线数据:

如何对数据进行可视化

在获取到沪深300的历史K线数据后,我们如果想初步计算一些技术指标,并把技术指标和历史行情展现出来,给我们下一步进行策略开发提供一些思路,应该如何实现?

对于数据可视化,有两种实现方式,一种是采用Python自带的plt库,另一种是专门处理显示K线数据的三方库:mplfinance。我们先来看第一种实现方式:

首先我们定义一个RSI函数,并输入刚才获取到的沪深300指数数据,然后,再调用plt库的相关方法,将RSI指标和历史价格,共同显示在一张图上。

# 将RSI值添加到hs300数据中
hs300['RSI'] = RSI(hs300)

# 画图
plt.figure(figsize=(12,6))
plt.plot(hs300['date'], hs300['close'], label='Close') # 画出收盘价曲线
plt.legend(loc='upper left')
plt.twinx()
plt.plot(hs300['date'], hs300['RSI'], 'r', label='RSI') # 画出RSI曲线
plt.legend(loc='upper right')
plt.show()

另一种方式,我们也可以使用mplfinance库,绘制出获取到沪深300的历史K线数据的K线量价图。这里,我们留下同时绘制RSI指标的问题,给读者思考和练习。

import mplfinance as mpf

hs300 = hs300.set_index('date')
hs300.index = pd.to_datetime(hs300.index)
mpf.plot(hs300, type='candle', volume=True, mav=(5,10,20), figratio=(12,6), title='HS300 Candlestick Chart')

如何使用BackTrader进行回测

Backtrader是一个功能强大的Python量化交易框架,用于开发、回测和执行交易策略。它提供了广泛的功能和工具,使得量化交易策略的开发和测试变得更加简单和高效。

Backtrader的一些主要特点和功能:

  1. 灵活的策略开发:Backtrader提供了简洁而灵活的API,使得策略的开发变得方便。你可以通过继承和扩展Backtrader的基础类来创建自定义的交易策略,并在其中定义买入、卖出信号和风险管理规则等。

  2. 多种交易工具支持:Backtrader支持多种交易工具,包括股票、期货、外汇等。你可以使用Backtrader来开发各种市场的交易策略。

  3. 多样化的交易指标和分析工具:Backtrader内置了大量的交易指标和分析工具,如移动平均线、布林带、相对强弱指标(RSI)、夏普比率等。这些工具可以帮助你分析市场趋势、计算策略绩效等。

  4. 灵活的数据回测:Backtrader提供了丰富的回测功能,可以使用历史数据对策略进行测试和优化。你可以使用不同的时间周期和数据频率进行回测,模拟真实的交易环境。同时,Backtrader还支持多线程回测,加快回测速度。

具体到Backtrader的使用,我们还是以获取到的沪深300指数历史数据、和RSI指标一起,构建量化策略的回测。首先,需要做的是把获取到的K线数据,转换成Backtrader的回测数据格式。

# Get data from tushare
df = ts.get_k_data('hs300', start='2014-01-01')
df['date'] = pd.to_datetime(df['date'])  # 将日期转换为datetime格式
df = df.set_index('date', drop=True)  # 将日期设置为索引
data = bt.feeds.PandasData(dataname=df, datetime=None,
                           open=0, high=1, low=2, close=3, volume=4, openinterest=-1)  # 创建数据源

第二步,我们构建一个RSI策略的回测函数,在这个回测函数中,我们先计算RSI指标14周期的数值,并以RSI<30作为买入信号,RSI>70作为卖出信号。

# Define the strategy
class RSI(bt.Strategy):
    params = (('rsi_period', 14),)

    def __init__(self):
        self.rsi = bt.indicators.RSI(period=self.params.rsi_period)

    def next(self):
        if not self.position:
            if self.rsi < 30:
                self.buy(size=1)
        else:
            if self.rsi > 70:
                self.sell(size=1)

第三步,调用BackTrader库相关方法,添加回测数据、设置初始资金和手续费、输出初始资金,运行策略,后输出最终资金并绘制图表。

cerebro = bt.Cerebro()
cerebro.adddata(data)  # 添加数据源
cerebro.addstrategy(RSI)
cerebro.broker.setcash(1000000.0)  # 设置初始资金
cerebro.broker.setcommission(commission=0.001)  # 设置佣金
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())  # 输出初始资金
cerebro.run()  # 运行策略
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())  # 输出最终资金
cerebro.plot()  # 绘制图表

通过上述三步,我们就完成了数据BackTrader格式的预处理、构建策略信号逻辑函数、以及运行BackTrader回测和展示回测结果,一起来看BackTrader展示的回测结果吧。

可以看到,BackTrader所展示的回测结果很丰富,包括了历史量价和RSI指标的展示、买卖点的标记、资金曲线、回撤线以及NetValue的数值。

综上,我们就完成了从数据获取、到数据可视化、再到策略回测的整个构建过程,感兴趣的朋友,可以把示例中Tushare获取的数据替换成其他标的历史数据,也可也修改RSI策略模块逻辑,构建自己的量化交易策略。总之,本文提供的是一个通用的回测框架,更多的玩法留给我们的读者。

 

与如何使用Tushare+ Backtrader进行股票量化策略回测相似的内容:

如何使用Tushare+ Backtrader进行股票量化策略回测

更多精彩内容,欢迎关注公众号:数量技术宅,也可添加技术宅个人微信号:sljsz01,与我交流。 典型股票量化回测流程 典型的股票量化策略回测流程包括以下几个步骤: 数据获取:首先需要获取所需的股票市场数据,包括股票价格、交易量、财务数据等。这些数据可以从金融数据供应商、交易所、财经网站或者专门的数据

如何使用csproj构建C#源代码组件NuGet包?

一般我们构建传统的NuGet包,都是打包和分发dll程序集文件。 至于打包和分发C#源代码文件的做法,比较少见。 那么这种打包源代码文件的做法,有什么优点和缺点呢? 优点: 方便阅读源代码。 方便断点调试。 减少 Assembly 程序集模块加载个数。 更利于发布期间的剪裁(PublishTrimm

如何使用JavaScript实现在线Excel附件的上传与下载?

前言 在本地使用Excel时,经常会有需要在Excel中添加一些附件文件的需求,例如在Excel中附带一些Word,CAD图等等。同样的,类比到Web端,现在很多人用的在线Excel是否也可以像本地一样实现附件文件的操作呢?答案是肯定的,不过和本地不同的是,Web端不会直接打开附件,而是使用超链接单

如何使用前端表格控件实现数据更新?

前言 小编之前分享过一篇文章叫《如何使用前端表格控件实现多数据源整合?》。今天,继续为大家介绍如何使用前端表格控件来更新已连接的数据源信息。 环境准备 SpreadJS在线表格编辑器: SpreadJS 前端表格控件新版本新增了一款报表插件,该插件基于 SpreadJS 本身强大的表格能力,在 Da

如何使用Node.js、TypeScript和Express实现RESTful API服务

Node.js是一个基于 Chrome V8 引擎的 JavaScript 运行环境。Node.js 使用了一个事件驱动、非阻塞式 I/O 的模型,使其轻量又高效。Express是一个保持最小规模的灵活的 Node.js Web应用程序开发框架,为Web和移动应用程序提供一组强大的功能。使用Node

如何使用前端表格控件实现多数据源整合?

前言 作为表格产品的典型应用场景之一,几乎所有的行业都会存在类 Excel 报表开发这样的应用场景,而在这些应用场景中,经常会遇见下面的这些痛点: 报表数据往往来自多个不同的数据源,需要报表系统能够同时连接多个数据源,并融合不同的数据格式 实际的报表中需要对数据结果进行逻辑计算,例如销售的环比和同比

如何使用Python和Plotly绘制3D图形

本文分享自华为云社区《Plotly绘制3D图形》 ,作者:柠檬味拥抱。 在数据可视化领域,三维图形是一种强大的工具,可以展示数据之间的复杂关系和结构。Python语言拥有丰富的数据可视化库,其中Plotly是一款流行的工具,提供了绘制高质量三维图形的功能。本文将介绍如何使用Python和Plotly

如何使用 JS 判断用户是否处于活跃状态

有时候,我们需要在网页判断用户是否处与非活跃状态,如果用户长时间没有在页面上进行任何操作,我们则判定该用户是非活跃的。 在 javascript 中我们可以通过监听某些鼠标或键盘相关的事件来判定用户是否在活跃中。

如何使用并查集解决朋友圈问题?

本文已收录到 GitHub · AndroidFamily,有 Android 进阶知识体系,欢迎 Star。技术和职场问题,请关注公众号 [彭旭锐] 私信我提问。 前言 大家好,我是小彭。 今天分享到的是一种相对冷门的数据结构 —— 并查集。虽然冷门,但是它背后体现的算法思想却非常精妙,在处理特定

如何使用 LinkedHashMap 实现 LRU 缓存?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 在上一篇文章里,我们聊到了 HashMap 的实现原理和源码分析,在源码分析的过程中,我们发现一些 LinkedHashMap 相关的源码,当时没有展开,现在它来了。 那么,LinkedH