NumPy 数组切片及数据类型介绍

numpy · 浏览次数 : 0

小编点评

```python import numpy as np # 创建一维数组arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # 从第二个元素到第五个元素(不包括) print(arr[1:5]) # 从头到尾,每隔一个元素print(arr[::2]) # 从倒数第三个元素到倒数第一个元素 print(arr[-3:-1]) # 创建 5x5 的二维数组 arr arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 从第二行到第三行,第一列到第三列(不包括) print(arr[1:3, 0:3]) # 从第一行到第三行,每隔一列print(arr[::2, :]) # 从第一行到第三行,第二列print(arr[:, 1]) # 打印元素和数据类型 print(arr.dtype) ``` **输出:** ``` int32 [1 2 3 4 5] float64 [1. 2. 3. 4. 5.] datetime64 [2023-03-08 14:15:00+0800] ``` **总结:** * NumPy 数组是一种同类型元素的数组。 * 数据类型定义了数组中元素的存储方式和允许的操作。 * NumPy 中使用首字母大写字符来表示基本数据类型。 * 可以使用 `np.array()` 函数创建数组。 * `astype()` 方法可以转换现有数组的数据类型。 * 在评论中分享您的代码和输出可以帮助其他设备和平台的小伙伴观看往期文章。

正文

NumPy 数组切片

NumPy 数组切片用于从数组中提取子集。它类似于 Python 中的列表切片,但支持多维数组。

一维数组切片

要从一维数组中提取子集,可以使用方括号 [] 并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号 : 分隔。

语法:

arr[start:end:step]
  • start:起始索引(默认为 0)。
  • end:结束索引(不包括)。
  • step:步长(默认为 1)。

示例:

import numpy as np

# 创建一维数组
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# 从第二个元素到第五个元素(不包括)
print(arr[1:5])  # 输出:array([2, 3, 4])

# 从头到尾,每隔一个元素
print(arr[::2])  # 输出:array([1, 3, 5, 7, 9])

# 从倒数第三个元素到倒数第一个元素
print(arr[-3:-1])  # 输出:array([8, 9])

二维数组切片

要从二维数组中提取子集,可以使用逗号分隔的两个索引,每个索引表示相应维度的切片。

语法:

arr[start_row:end_row, start_col:end_col:step]
  • start_row:起始行索引(默认为 0)。
  • end_row:结束行索引(不包括)。
  • start_col:起始列索引(默认为 0)。
  • end_col:结束列索引(不包括)。
  • step:步长(默认为 1)。

示例:

import numpy as np

# 创建二维数组
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 从第二行到第三行,第一列到第三列(不包括)
print(arr[1:3, 0:3])  # 输出:array([[4, 5, 6], [7, 8, 9]])

# 从第一行到第三行,每隔一列
print(arr[::2, :])  # 输出:array([[1, 3, 5], [7, 9]])

# 从第一行到第三行,第二列
print(arr[:, 1])  # 输出:array([2, 5, 8])

练习

创建一个 5x5 的二维数组 arr,并打印以下子集:

  • 第一行的所有元素
  • 第二列的所有元素
  • 从左上角到右下角的对角线元素
  • 2x2 的子数组,从第二行第三列开始

在评论中分享您的代码和输出。

Sure, here is the requested Markdown formatted content:

NumPy 数据类型

NumPy 数组由同类型元素组成,并具有指定的数据类型。数据类型定义了数组中元素的存储方式和允许的操作。

NumPy 中的数据类型

NumPy 具有比 Python 更丰富的基本数据类型,并使用首字母大写字符来表示它们:

  • i: 整数(int)
  • b: 布尔值(bool)
  • u: 无符号整数(unsigned int)
  • f: 浮点数(float)
  • c: 复数浮点数(complex float)
  • m: 时间差(timedelta)
  • M: 日期时间(datetime)
  • O: 对象(object)
  • S: 字符串(string)
  • U: Unicode 字符串(unicode string)
  • V: 可变长度字节(void)

检查数组的数据类型

NumPy 数组具有一个属性 dtype,用于获取数组元素的数据类型。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr.dtype)

输出:

int32

使用指定数据类型创建数组

我们可以使用 np.array() 函数并指定 dtype 参数来创建具有指定数据类型的数组。

import numpy as np

arr = np.array([1, 2, 3, 4, 5], dtype='float64')
print(arr)
print(arr.dtype)

输出:

[1. 2. 3. 4. 5.]
float64

转换数组的数据类型

我们可以使用 astype() 方法转换现有数组的数据类型。

import numpy as np

arr = np.array([1.1, 2.2, 3.3, 4.4, 5.5])
new_arr = arr.astype(int)
print(new_arr)
print(new_arr.dtype)

输出:

[1 2 3 4 5]
int32

NumPy 数据类型简表

数据类型 字符 描述
整数 i 有符号整数
布尔值 b True 或 False
无符号整数 u 无符号整数
浮点数 f 固定长度浮点数
复数浮点数 c 复数浮点数
时间差 m 时间间隔
日期时间 M 日期和时间
对象 O Python 对象
字符串 S 固定长度字符串
Unicode 字符串 U 可变长度 Unicode 字符串
可变长度字节 V 用于其他类型的固定内存块

练习

创建以下 NumPy 数组,并打印它们的元素和数据类型:

  • 一个包含 10 个随机整数的数组。
  • 一个包含 5 个布尔值的数组。
  • 一个包含 7 个复杂数的数组。
  • 一个包含 10 个日期时间对象的数组。

在评论中分享您的代码和输出。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

与NumPy 数组切片及数据类型介绍相似的内容:

NumPy 数组切片及数据类型介绍

NumPy 数组切片 NumPy 数组切片用于从数组中提取子集。它类似于 Python 中的列表切片,但支持多维数组。 一维数组切片 要从一维数组中提取子集,可以使用方括号 [] 并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号 : 分隔。 语法: arr[start:end:step]

【numpy基础】--目录(完结)

# 概述 NumPy是一个开源的科学计算库,它提供了高效的数值计算和数组操作功能,主要包括: * 多维数组的创建、操作和索引。 * 数组的切片、拼接和转置。 * 数组的乘法、除法、求导、积分、对数等基本运算。 * 数组的逐元素操作、求平均值、中位数、众数等统计量。 * 数组作为列表、元组等数据类型进

Python NumPy 广播(Broadcast)

张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix) Python Numpy 切片和索引(高级索引、布尔索引、花式索引) Python NumPy 广播(Broadcast) 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方

NumPy 数组排序、过滤与随机数生成详解

本文介绍了NumPy中的数组排序和过滤功能。`np.sort()`函数用于对数组进行升序排序,对二维数组则按行排序。示例展示了如何对一维和二维数组排序。此外,还讲解了使用布尔索引来过滤数组,以及直接在条件中操作数组以创建过滤后的数组。最后,介绍了NumPy的随机数生成,包括整数、浮点数及特定分布的随...

NumPy 数组迭代与合并详解

NumPy 数组迭代 NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。 基本迭代 我们可以使用 Python 的基本 for 循环来迭代 NumPy 数组。 一维数组迭代: import numpy as np arr = np.array([1, 2, 3,

NumPy 数组复制与视图详解

NumPy 数组的复制与视图 NumPy 数组的复制和视图是两种不同的方式来创建新数组,它们之间存在着重要的区别。 复制 复制 会创建一个包含原始数组相同元素的新数组,但这两个数组拥有独立的内存空间。这意味着对复制进行的任何更改都不会影响原始数组,反之亦然。 创建副本可以使用以下方法: arr.co

NumPy 数组创建方法与索引访问详解

NumPy 创建数组 NumPy 中的核心数据结构是 ndarray,它代表多维数组。NumPy 提供了多种方法来创建 ndarray 对象,包括: 使用 array() 函数 array() 函数是最常用的方法之一,它可以将 Python 列表、元组甚至其他数组转换为 ndarray 对象。 语法

【numpy基础】--数组排序

`numpy` 数组通常是用于数值计算的多维数组,而排序功能可以快速、准确地对数据进行排序,从而得到更加清晰、易于分析的结果。 在数据分析和处理过程中,常常需要对数据进行排序,以便更好地理解和发现其中的规律和趋势。 排序会应用在很多场景中,比如: 1. 数据分类:将数据按照一定的特征进行分类,可以通

NumPy 分割与搜索数组详解

NumPy 分割数组 NumPy 提供了 np.array_split() 函数来分割数组,将一个数组拆分成多个较小的子数组。 基本用法 语法: np.array_split(array, indices_or_sections, axis=None) array: 要分割的 NumPy 数组。 i

【numpy基础】--数组简介

`NumPy`(Numerical Python)是一个`Python`库,主要用于高效地处理多维数组和矩阵计算。它是科学计算领域中使用最广泛的一个库。 在`NumPy`中,**数组**是最核心的概念,用于存储和操作数据。 `NumPy`数组是一种多维数组对象,可以存储相同类型的元素,它支持高效的数