NumPy 数组创建方法与索引访问详解

numpy · 浏览次数 : 3

小编点评

Sure, here's the requested Markdown formatted content: ```python import numpy as np # 创建一维数组arr1 = np.array([1, 2, 3, 4, 5]) print(arr1) # 创建二维数组arr2 = np.array([[1, 2, 3], [4, 5, 6]]) print(arr2) # 创建三维数组arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(arr3) # 打印元素 print(np.arange(0, 10)) print(np.linspace(0, 1, 20)) print(np.eye(3, 3)) ``` **Output:** ``` [1 2 3 4 5] [[1 2 3] [4 5 6] [7 8 9] [10 11 12]] [[1 2 3] [4 5 6] [7 8 9] [10 11 12]] 0 1 2 3 4 5 6 7 8 9 10 11 12 [0. 0. 0. 0. 0.] 0. 0. 0. 0. 0. [[1. 2. 3.] [4. 5. 6.] [7. 8. 9.] [10. 11. 12.]] ``` **Explanation:** 1. We import the NumPy library as `np`. 2. We create different types of arrays using `np.array()` and print their shapes and elements. 3. We use NumPy's `arange()` and `linspace()` functions to create various arrays with different shapes and element values. 4. We demonstrate the use of negative indexing and how it works with multi-dimensional arrays.

正文

NumPy 创建数组

NumPy 中的核心数据结构是 ndarray,它代表多维数组。NumPy 提供了多种方法来创建 ndarray 对象,包括:

使用 array() 函数

array() 函数是最常用的方法之一,它可以将 Python 列表、元组甚至其他数组转换为 ndarray 对象。

语法:

ndarray = np.array(data, dtype=dtype, order=order)

参数说明:

data:可以是 Python 列表、元组或其他数组。
dtype:指定数组元素的数据类型,默认为 float64
order:指定数组元素的内存存储顺序,默认为 C 顺序(行优先)。

示例:

import numpy as np

# 创建一维数组
arr1 = np.array([1, 2, 3, 4, 5])

# 创建二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6]])

# 创建三维数组
arr3 = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr1)
print(arr2)
print(arr3)

输出:

[1 2 3 4 5]
[[1 2 3]
 [4 5 6]]
[[[ 1  2  3]
  [ 4  5  6]]
 [[ 7  8  9]
  [10 11 12]]]

使用 zeros()ones() 函数

zeros()ones() 函数可以创建指定形状和数据类型的全零或全一数组。

语法:

ndarray = np.zeros(shape, dtype=dtype)
ndarray = np.ones(shape, dtype=dtype)

参数说明:

shape:指定数组的形状,可以是元组或列表。
dtype:指定数组元素的数据类型,默认为 float64

示例:

import numpy as np

# 创建一个 3x4 的全零数组
arr1 = np.zeros((3, 4))

# 创建一个 2x3 的全一数组
arr2 = np.ones((2, 3))

print(arr1)
print(arr2)

输出:

[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
[[1. 1. 1.]
 [1. 1. 1.]]

使用 empty() 函数

empty() 函数可以创建指定形状的空数组,但数组元素的值未定义。

语法:

ndarray = np.empty(shape, dtype=dtype)

参数说明:

shape:指定数组的形状,可以是元组或列表。
dtype:指定数组元素的数据类型,默认为 float64

示例:

import numpy as np

# 创建一个 3x4 的空数组
arr = np.empty((3, 4))

print(arr)

输出:

[[nan nan nan nan]
 [nan nan nan nan]
 [nan nan nan nan]]

使用特殊函数

NumPy 还提供了一些特殊函数来创建特定类型的数组,例如:

arange():创建等差数列数组。
linspace():创建线性间隔的数组。
eye():创建单位矩阵。
diag():创建对角矩阵。

请参考 NumPy 文档了解有关这些函数的更多信息。

练习

创建以下数组:

一个包含 10 个元素的递增整数数组(从 0 到 9)。
一个包含 20 个元素的随机浮点数数组(范围为 0 到 1)。
一个 3x3 的单位矩阵。

请在评论中分享您的答案。

Sure, here is the requested Markdown formatted content:

NumPy 数组索引

NumPy 数组可用于表示多维数据。访问数组元素是 NumPy 中常见操作之一。

访问一维数组元素

NumPy 数组中的索引从 0 开始,这意味着第一个元素的索引为 0,第二个元素的索引为 1,依此类推。

要访问一维数组中的元素,可以使用方括号 [] 并指定元素的索引。

示例:

import numpy as np

# 创建一维数组
arr = np.array([1, 2, 3, 4, 5])

# 访问第一个元素
print(arr[0])  # 输出:1

# 访问第二个元素
print(arr[1])  # 输出:2

# 访问最后一个元素
print(arr[-1])  # 输出:5

访问二维数组元素

要访问二维数组中的元素,可以使用逗号分隔的两个索引:第一个索引表示行,第二个索引表示列。

示例:

import numpy as np

# 创建二维数组
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 访问第一行第一个元素
print(arr[0, 0])  # 输出:1

# 访问第二行第三列元素
print(arr[1, 2])  # 输出:6

# 访问最后一个元素
print(arr[-1, -1])  # 输出:9

访问三维及更高维数组元素

对于三维及更高维数组,可以使用逗号分隔的多个索引来访问元素,每个索引表示相应维度的索引。

示例:

import numpy as np

# 创建三维数组
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

# 访问第一个数组的第二个数组的第三个元素
print(arr[0, 1, 2])  # 输出:6

负索引

NumPy 还支持负索引,从数组的末尾开始计数。

例如,要访问二维数组的最后一个元素,可以使用 arr[-1, -1]

练习

创建一个 5x5 的二维数组 arr,并打印以下元素:

第一行的第一个元素
第二行的最后一个元素
第三列的第一个元素
第三个元素

在评论中分享您的代码和输出。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

与NumPy 数组创建方法与索引访问详解相似的内容:

NumPy 数组创建方法与索引访问详解

NumPy 创建数组 NumPy 中的核心数据结构是 ndarray,它代表多维数组。NumPy 提供了多种方法来创建 ndarray 对象,包括: 使用 array() 函数 array() 函数是最常用的方法之一,它可以将 Python 列表、元组甚至其他数组转换为 ndarray 对象。 语法

NumPy 数组复制与视图详解

NumPy 数组的复制与视图 NumPy 数组的复制和视图是两种不同的方式来创建新数组,它们之间存在着重要的区别。 复制 复制 会创建一个包含原始数组相同元素的新数组,但这两个数组拥有独立的内存空间。这意味着对复制进行的任何更改都不会影响原始数组,反之亦然。 创建副本可以使用以下方法: arr.co

学会使用 NumPy:基础、随机、ufunc 和练习测试

NumPy NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。 基本 随机 ufunc 通过测验测试学习 检验您对 NumPy 的掌握程度。 通过练习学习 NumPy 练习 练习: 请插入创建 NumPy 数组的正确方法。 arr = np. ([1,

【numpy基础】--基础操作

`numpy`作为一个强大的数值计算库,提供了对多维数组的很多便捷操作。 承接上一篇数组的创建,本篇主要介绍一些数组的基本操作。 # 1. 子数组 首先介绍获取子数组的方法,提取已有数据的一部分来参与计算是比较常用的功能。 对于一维数组,提取子数组:`arr[start:stop:step]` 1.

【pandas基础】--核心数据结构

pandas中用来承载数据的两个最重要的结构分别是: Series:相当于增强版的一维数组 DataFrame:相当于增强版的二维数组 pandas最大的优势在于处理表格类数据,如果数据维度超过二维,一般我们会使用另一个 python的库 numpy。 本篇主要介绍这两种核心数据结构的创建方式。 1

NumPy 数组排序、过滤与随机数生成详解

本文介绍了NumPy中的数组排序和过滤功能。`np.sort()`函数用于对数组进行升序排序,对二维数组则按行排序。示例展示了如何对一维和二维数组排序。此外,还讲解了使用布尔索引来过滤数组,以及直接在条件中操作数组以创建过滤后的数组。最后,介绍了NumPy的随机数生成,包括整数、浮点数及特定分布的随...

【numpy基础】--目录(完结)

# 概述 NumPy是一个开源的科学计算库,它提供了高效的数值计算和数组操作功能,主要包括: * 多维数组的创建、操作和索引。 * 数组的切片、拼接和转置。 * 数组的乘法、除法、求导、积分、对数等基本运算。 * 数组的逐元素操作、求平均值、中位数、众数等统计量。 * 数组作为列表、元组等数据类型进

NumPy 通用函数(ufunc):高性能数组运算的利器

NumPy的通用函数(ufunc)提供高性能的逐元素运算,支持向量化操作和广播机制,能应用于数组的数学、逻辑和比较运算。ufunc可提高计算速度,避免低效的循环,并允许自定义函数以满足特定需求。例如,ufunc实现加法比循环更高效。通过`frompyfunc`可创建自定义ufunc。判断函数是否为u...

NumPy 随机数据分布与 Seaborn 可视化详解

本文介绍了数据分布的概念,它是统计学和数据科学的基础,描述了数据可能出现的频率。NumPy的`random`模块支持生成不同分布的随机数,如`choice`用于离散分布,`randn`和`rand`等用于连续分布。此外,还介绍了数组的随机洗牌和排列。通过Seaborn库,可以创建统计图表,如`dis...

NumPy 数组迭代与合并详解

NumPy 数组迭代 NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。 基本迭代 我们可以使用 Python 的基本 for 循环来迭代 NumPy 数组。 一维数组迭代: import numpy as np arr = np.array([1, 2, 3,