LLM应用实战:当KBQA集成LLM(二)

llm,kbqa · 浏览次数 : 0

小编点评

**问题和答案** 1. **头像鸭头的龙有哪些?** 答:头像鸭头的有慈母龙、原角龙、鹦鹉嘴龙、姜氏巴克龙、奇异辽宁龙、多背棘沱江龙、陆家屯鹦鹉嘴龙、盖斯顿龙、小盾龙、肿头龙、弯龙 2. **老师说的有一个特别会照顾宝宝的恐龙是什么龙?** 答:慈母龙 3. **有哪些恐龙会游泳啊?** 答:滑齿龙、慢龙和色雷斯龙 4. **科学家在意大利阿尔卑斯山脉Preone山谷的乌迪内附近发现了一个会飞的史前动物化石,是谁的化石?** 答:沛温翼龙 5. **结果如何提升?** 答:优化图谱存储至Es,支持Es的向量检索,以及解决了一部分基于属性值倒查实体的场景 6. **总结** 答:本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到图谱存储至Es,且支持Es的向量检索,还有解决了一部分基于属性值倒查实体的场景,且效果相对提升。

正文

1. 背景

又两周过去了,本qiang~依然奋斗在上周提到的项目KBQA集成LLM,感兴趣的可通过传送门查阅先前的文章《LLM应用实战:当KBQA集成LLM》。

本次又有什么更新呢?主要是针对上次提到的缺点进行优化改进。主要包含如下方面:

1. 数据落库

上次文章提到,KBQA服务会将图谱的概念、属性、实体、属性值全部加载到内存,所有的查询均在内存中进行,随之而来的问题就是如果图谱的体量很大呢,那内存不爆了么…

2. 支持基于属性值查实体

上篇文章不支持属性值查找实体,比如”最会照顾宝宝的是什么龙”,”什么龙是大龙和大龙生活,小龙和小龙生活”。本次已经此问题优化。

此篇文章是对这两周工作的一个整体总结,其中包含部分工程层面的优化。

2. 整体框架

 

 

整体框架和上篇大致相同,不同之处在于:

1. 对齐模块:先前是基于SIM筛选候选实体,本次基于ES进行候选实体召回

2. 解析模块:先前是基于hugegraph和内存中的实体信息进行解析,本次优化为基于hugegraph和elasticsearch

3. 核心功能

3.1 数据库选型

由于需要支撑语义相似度检索,因此数据库选型为Milvus与Elasticsearch。

二者之间的比对如下:

 

 

Milvus

Elastic

 

 

 

扩展性层面

存储和计算分离

查询和插入分类

组件级别支持

服务器层面支持

多副本

动态分段 vs 静态分片

动态分段

静态分片

云原生

十亿级规模向量支持

 

 

 

功能性层面

权限控制

磁盘索引支撑

混合搜索

分区/命名空间/逻辑组

索引类型

11个(FLAT, IVF_FLAT, HNSW)等

1个(HNSW)

多内存索引支持

 

 

 

专门构建层面

为向量而设计

可调一致性

流批向量数据支持

二进制向量支持

多语言SDK

python, java, go, c++, node.js, ruby

python, java, go, c++, node.js, ruby, Rust, C#, PHP, Perl

数据库回滚

但由于Milvus针对国产化环境如华为Atlas适配不佳,而Es支持国产化环境,因此考虑到环境通用性,选择Es,且其文本搜索能力较强。

3.2 表结构设计

由于知识图谱的概念、属性一般量级较少,而实体数随着原始数据的丰富程度客场可短。因此将实体及其属性值在Es中进行存储。

针对KBQA集成LLM的场景,有两块内容会涉及语义搜索召回。

1. 对齐prompt中的候选实体

2. 解析模块中存在需要基于属性值查询实体的情况。

3. 涉及到数值类型的查询,如大于xx,最大,最小之类。

综合考虑,将Es的index结构设计如下:

属性

含义

类型

备注

name

实体名

keyword

 

concepts

所属概念

keyword

一个实体可能存在多个概念

property

属性

keyword

属性名称

value

属性值

text

ik分词器进行分词

numbers

数值属性值

double_range

会存在一个区间范围

embeddings

向量

elastiknn_dense_float_vector

1. 非数值属性对应value的向量

2. 使用elastiknn插件

3.3 安装部署

项目使用的Es版本是8.12.2,原因是elastiknn插件和Ik插件针对该版本均支持,且8.12.2版本是当前阶段的次新版本。

3.3.1 基于docker的ES部署

# 拉取镜像(最好先设置国内镜像加入)
docker pull elasticsearch:8.12.2

# es容器启动,存在SSL鉴权
docker run -d --name es01 --net host  -p 9200:9200 -it -e "ES_JAVA_OPTS=-Xms1024m -Xmx1024m" elasticsearch:8.13.2

# 容器中拉取需要鉴权的信息到本地
docker cp es01:/usr/share/elasticsearch/config/certs/http_ca.crt .
chmode 777 http_ca.crt

# 密码第一次启动的日志中有,需要保存下来
export ELASTIC_PASSWORD=xxxxxx

# 验证es是否启动成功
curl --cacert http_ca.crt -u elastic:$ELASTIC_PASSWORD https://localhost:9200

3.3.2 elastiknn插件集成

elastiknn插件是为了优化ES自身的向量检索性能,安装此插件后,ES的向量检索性能会提升数倍,如果再增加SSD固态硬盘,性能会进一步提升数倍。

#下载插件包
wget https://github.com/alexklibisz/elastiknn/releases/download/8.12.2.1/elastiknn-8.12.2.1.zip

# 导入容器中指定目录
docker cp  elastiknn-8.12.2.1.zip es01:/usr/share/elasticsearch/

# 进入容器,默认目录即为/usr/share/elasticsearch/
docker exec -it es01 bash

# 安装插件
elasticsearch-plugin install file:elastiknn-8.12.2.1.zip

# 退出,重启容器
docker restart es01

# 验证
# 创建mapping
curl --cacert http_ca.crt -u elastic:$ELASTIC_PASSWORD -XPOST https://localhost:9200/test/_mapping -H 'Content-Type:application/json' -d '
{
    "properties": {
        "embeddings": {
            "type": "elastiknn_dense_float_vector",
            "elastiknn": {
                "model": "lsh",
                "similarity": "cosine",
                "dims": 768,
                "L": 99,
                "k": 3
            }
        }
    }
}'

# 验证mapping是否生效
curl --cacert http_ca.crt -u elastic:$ELASTIC_PASSWORD -XGET https://localhost:9200/test/_mapping?pretty

采坑总结:

1. elastiknn插件导入始终无法安装,且报错。

解决:

(1) 一定要注意,安装es插件需要指定路径,且增加”file:” 的前缀,不加此前缀,那就等着报错吧

(2) 拷贝到容器内部,一定要注意,不要将elastiknn-8.12.2.1.zip拷贝至/usr/share/elasticsearch/plugins目录,否则安装也报错。

3.3.3 ik分词器插件集成

#下载插件包
wget https://github.com/infinilabs/analysis-ik/releases/download/v8.12.2/elasticsearch-analysis-ik-8.12.2.zip

# 导入容器中指定目录
docker cp elasticsearch-analysis-ik-8.12.2.zip es01:/usr/share/elasticsearch/

# 进入容器,默认目录即为/usr/share/elasticsearch/
docker exec -it es01 bash

# 安装插件
elasticsearch-plugin install file:elasticsearch-analysis-ik-8.12.2.zip

# 退出,重启容器
docker restart es01

# 验证是否生效
curl --cacert http_ca.crt -u elastic:$ELASTIC_PASSWORD -XPOST https://localhost:9200/_analyze?pretty -H 'Content-Type:application/json' -d '{"text":"三角龙或者霸王龙","analyzer": "ik_smart"}'
# 返回结果中不包含”或者”,因为”或者”在默认的停用词表中。

采坑总结:

1. ik分词器插件导入始终无法安装,且报错。

解决:一定要注意,安装es插件需要指定路径,且增加”file:” 的前缀,不加此前缀,那就等着报错吧

2. ik分词器添加自定义专有名词以及停用词不生效(浪费了1天的时间来排查)

解决:

(1) 一定要注意,8.12.2版本的ik分词器如果想要配置自定义专有名词或停用词,配置的完整目录是/usr/share/elasticsearch/config/analysis-ik,而不是/usr/share/elasticsearch/plugins/analysis-ik,这点需要注意下。

在config/analysis-ik中配置IKAnalyzer.cfg.xml,修改内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
    <comment>IK Analyzer 扩展配置</comment>
    <!--用户可以在这里配置自己的扩展字典 -->
    <entry key="ext_dict">extra_main.dic</entry>
     <!--用户可以在这里配置自己的扩展停止词字典-->
    <entry key="ext_stopwords">extra_stopword.dic</entry>
    <!--用户可以在这里配置远程扩展字典 -->
    <!-- <entry key="remote_ext_dict">words_location</entry> -->
    <!--用户可以在这里配置远程扩展停止词字典-->
    <!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

(2) 一定要注意,extra_main.dic和extra_stopword.dic的编码格式是UTF-8,如果编码格式不对的话,分词也不生效。

4. Es操作相关源码

4.1 es_client连接

self.es_client = Elasticsearch(config['url'], 
                               basic_auth=(config['user'], config['password']), 
                               ca_certs=config['crt_path'],
                               http_compress=True,
                               request_timeout=int(config['request_timeout']) if 'request_timeout' in config else 60,
                               max_retries=int(config['max_retries']) if 'max_retries' in config else 5,
                               retry_on_timeout=True)

4.2 构建表结构

def index(self, kg_id, force=False):
    """
    构建表
    """
    if force:
        try:
            self.es_client.indices.delete(index=kg_id, ignore_unavailable=True)
        except EngineError as e:
            logger.exception(f"code:{ES_DELETE_INDEX_ERROR}, message:{str(e)}")
            raise e

    if not self.es_client.indices.exists(index=kg_id):
        body = {
            'settings': {'index': {'number_of_shards': 2}},
            'mappings': {
                'dynamic': False,
                'properties': {
                    'name': {'type': 'keyword'},
                    'concepts': {'type': 'keyword'},
                    'property': {'type': 'keyword'},
                    'value': {'type': 'text', 'analyzer': 'ik_max_word', 'search_analyzer': 'ik_smart'},
                    'numbers': {'type': 'double_range'},
                    'embeddings': {'type': 'elastiknn_dense_float_vector', 'elastiknn': {'dims': 768, 'model': 'lsh', 'similarity': 'cosine', 'L': 99, 'k': 3}}
                }
            }
        }
        try:
            self.es_client.indices.create(index=kg_id, body=body)
        except EngineError as e:
            logger.exception(f"code:1008, message:{str(e)}")
            raise e
    try:   
        self.es_client.indices.refresh(index=kg_id, ignore_unavailable=True)
    except EngineError as e:
        logger.exception(f"code:1008, message:{str(e)}")
        raise e

说明:

1. value字段需要经过IK分词,分词方式ik_max_word,查询方式是ik_smart

2. embeddings的类型为elastiknn_dense_float_vector,其中向量维度为768,相似度计算使用cosine

4.3 候选实体查询

def get_candidate_entities(self, kg_id, query, limit=15):
    """
    基于查询串查找候选实体名称
    """
    body = {
        '_source': {'excludes': ["embeddings"]},
        'query': {
            'function_score': {
                'query': {
                    'bool': {
                        'must': [
                            {'match': {'value': query}},
                            {'bool': {
                                'filter': {
                                    'bool': {
                                        'should': [
                                            {'term': {"property": "名称"}},
                                            {'term': {"property": "别名"}},
                                        ]
                                    }
                                }
                            }}
                        ]
                    }
                },
                'functions': [
                    {
                       'elastiknn_nearest_neighbors': {
                           'field': 'embeddings',
                           'vec': self.get_callback_ans({'query': [query]})['result'][0]['embeddings'],
                           'model': 'lsh',
                           'similarity': 'cosine',
                           'candidates': 100
                       } 
                    }
                ]
            }
        },
        'size': limit
    }
    return self.es_client.search(index=kg_id, body=body)['hits']['hits']

说明:

1. '_source': {'excludes': ["embeddings"]}表示输出结果中过滤embeddings字段

2. 查询以function_score方式,其中的query表示别名或名称与问题的匹配程度,functions表示打分方式,目前的打分是基于向量相似度进行打分,其中, self.get_callback_ans表示语义相似度模型将文本转换为向量。注意:最终的得分由两部分组成,一部分是文本匹配,一部分是语义相似度匹配,不过可以增加参数boost_mode进行设置。

4.4 基于属性及属性值进行查询

def search_by_property_value(self, kg_id, property, value, limit=100):
    body = {
        '_source': {'excludes': ["embeddings"]},
        'query': {
            'function_score': {
                'query': {
                    'bool': {
                        'must': [
                            {'match': {'value': value}},
                            {'term': {"property": property}}
                        ]
                    }
                },
                'functions': [
                    {
                       'elastiknn_nearest_neighbors': {
                           'field': 'embeddings',
                           'vec': self.get_callback_ans({'query': [value]})['result'][0]['embeddings'],
                           'model': 'lsh',
                           'similarity': 'cosine',
                           'candidates': 100
                       } 
                    }
                ],
                'boost_mode': 'replace'
            }
        },
        'size': limit
    }
    try:
        return self.es_client.search(index=kg_id, body=body)['hits']['hits']
    except EngineError as e:
        logger.exception(f"code:{ES_SEARCH_ERROR}, message:{str(e)}")
        raise e

4.5 数值属性范围查询

主要解决的场景有:体重大于9吨的恐龙有哪些?身长小于10米的角龙类有哪些?

其中,如果提供了实体名称,则查询范围是基于这些实体进行查询比较。

def search_by_number_property(self, kg_id, property, operate, entities, limit=100):
    musts = [{'term': {'property': property}}, {'range': {'numbers': operate}}]
    if entities:
        musts.append({'terms': {'name': entities}})

    body = {
        '_source': {'excludes': ['embeddings']},
        'query': {
            'bool': {
                'must': musts
            }
        },
        'size': limit
    }
    try:
        return self.es_client.search(index=kg_id, body=body)['hits']['hits']
    except EngineError as e:
        logger.exception(f"code:{ES_SEARCH_ERROR}, message:{str(e)}")
        raise e

4.6 数值属性最大最小查询

实现最大最小的逻辑,采用了sort机制,按照numbers进行排序,最大则顺排,最小则倒排。

def search_by_number_property_maxmin(self, kg_id, property, entities, sort_flag):
    musts = [{'term': {'property': property}}]
    if entities:
        musts.append({'terms': {'name': entities}})

    body = {
        '_source': {'excludes': ["embeddings"]},
        'query': {
            'bool': {
                'must': musts
            }
        },
        'sort': {'numbers': sort_flag},
        'size': 1
    }
    try:
        return self.es_client.search(index=kg_id, body=body)['hits']['hits']
    except EngineError as e:
        logger.exception(f"code:{ES_SEARCH_ERROR}, message:{str(e)}")
        raise

5. 效果

上一版未解决的问题,在本版本优化的结果。

1. 问:头像鸭头的龙有哪些?

答:头像鸭头的有慈母龙、原角龙、鹦鹉嘴龙、姜氏巴克龙、奇异辽宁龙、多背棘沱江龙、陆家屯鹦鹉嘴龙、盖斯顿龙、小盾龙、肿头龙、弯龙

2. 问:老师说的有一个特别会照顾宝宝的恐龙是什么龙?

答:慈母龙会照顾宝宝。

3. 问:有哪些恐龙会游泳啊?

答:滑齿龙、慢龙和色雷斯龙是会游泳的恐龙。

4. 问:科学家在意大利阿尔卑斯山脉Preone山谷的乌迪内附近发现了一个会飞的史前动物化石,它是谁的化石?

答:科学家在意大利阿尔卑斯山脉Preone山谷的乌迪内附近发现的会飞的史前动物化石是沛温翼龙的化石。

6. 总结

一句话足矣~

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到图谱存储至Es,且支持Es的向量检索,还有解决了一部分基于属性值倒查实体的场景,且效果相对提升。

其次,提供了部分Es的操作源码,以飧读者。

 

 

 

附件:

1. es vs milvus: https://zilliz.com/comparison/milvus-vs-elastic

2. docker安装es:https://www.elastic.co/guide/en/elasticsearch/reference/8.12/docker.html

3. elastiknn性能分析:https://blog.csdn.net/star1210644725/article/details/134021552

4. es的function_score: https://www.elastic.co/guide/en/elasticsearch/reference/8.12/query-dsl-function-score-query.html

 

与LLM应用实战:当KBQA集成LLM(二)相似的内容:

LLM应用实战:当KBQA集成LLM(二)

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到图谱存储至Es,且支持Es的向量检索,还有解决了一部分基于属性值倒查实体的场景,且效果相对提升。

LLM应用实战:当图谱问答(KBQA)集成大模型(三)

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。

LLM实战:当网页爬虫集成gpt3.5

本文主要是通过Scrapegraph-ai集成gpt3.5实现一个简单的网页爬取并解析的demo应用,其中涉及到gpt3.5免费申请,Scrapegraph-ai底层原理简介,demo应用源码等。

LLM 大模型学习必知必会系列(十):基于AgentFabric实现交互式智能体应用,Agent实战

LLM 大模型学习必知必会系列(十):基于AgentFabric实现交互式智能体应用,Agent实战 0.前言 **Modelscope **是一个交互式智能体应用基于ModelScope-Agent,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。AgentFabric围绕可

深入探讨Function Calling:在Semantic Kernel中的应用实践

引言 上一章我们熟悉了 OpenAI 的 function calling 的执行原理,这一章节我们讲解一下 function calling 在 Semantic Kernel 的应用。 在OpenAIPromptExecutionSettings跟 LLM 交互过程中,ToolCallBehav

Langchain-Chatchat项目:1-整体介绍

基于Langchain与ChatGLM等语言模型的本地知识库问答应用实现。项目中默认LLM模型改为THUDM/chatglm2-6b[2],默认Embedding模型改为moka-ai/m3e-base[3]。 一.项目介绍 1.实现原理 本项目实现原理如下图所示,过程包括加载文件->读取文本->文

AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望

AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望 1. AI Agent(LLM Agent)介绍 1.1. 术语 Agent:“代理” 通常是指有意行动的表现。在哲学领域,Agent 可以是人、动物,甚至是具有自主性的概念或实体。 AI Agent

Llama2-Chinese项目:7-外延能力LangChain集成

本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。 1.调用Llama2类 针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下

Langchain-Chatchat项目:3-Langchain计算器工具Agent思路和实现

本文主要讨论Langchain-Chatchat项目中自定义Agent问答的思路和实现。以"计算器工具"为例,简单理解就是通过LLM识别应该使用的工具类型,然后交给相应的工具(也是LLM模型)来解决问题。一个LLM模型可以充当不同的角色,要把结构化的Prompt模板写好,充分利用LLM的Zero/O

构建RAG应用-day05: 如何评估 LLM 应用 评估并优化生成部分 评估并优化检索部分

评估 LLM 应用 1.一般评估思路 首先,你会在一到三个样本的小样本中调整 Prompt ,尝试使其在这些样本上起效。 随后,当你对系统进行进一步测试时,可能会遇到一些棘手的例子,这些例子无法通过 Prompt 或者算法解决。 最终,你会将足够多的这些例子添加到你逐步扩大的开发集中,以至于手动运行