【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取

高级,rag,技巧,模型,知识库,问答,增强,文档,分割,表格,提取 · 浏览次数 : 15

小编点评

**OpenParse 文档分割库** OpenParse 是一款用于文档分割的开源库,它可以从文本中提取多个节点,每个节点就是一个 **chunk**,每个 chunk 都是一个独立的文本段。 **主要功能:** * 支持文本和表格的分割 * 支持多種資料格式的处理 * 提供语义相似和表格内容提取方法 **优势:** * 强大的功能集 * 高效的性能 * 支持多种資料格式 * 提供语义相似提取 **劣势:** * 对硬件要求较高 * 部分資料可能缺乏標籤,可能導致資料無法分割 **使用方法:** 1. 安装库:`pip install openparse` 2. 获取 PDF 文件的路径 3. 创建一个 `DocumentParser` 对象,指定 `table_args` 参数(可选) 4. 解析 PDF 文件并提取所有节点 5. 打印或返回提取的节点 **示例:** ```python # 加载库 parser = openparse.DocumentParser() # 解析 PDF 文件 parsed_basic_doc = parser.parse("path/to/pdf.pdf") # 打印节点 for node in parsed_basic_doc.nodes: print(node) ``` **其他信息:** * OpenParse 是一个由 Google 维护的开源项目。 * 库文档包含一些示例代码,可以帮助您了解如何使用它。 * 您可以通过修改 `table_args` 参数来调整表格提取的策略。

正文

前言

文档分割是一项具有挑战性的任务,它是任何知识库问答系统的基础。高质量的文档分割结果对于显著提升问答效果至关重要,但是目前大多数开源库的处理能力有限。
这些开源的库或者方法缺点大致可以罗列如下:

  • 只能处理文本,无法提取表格中的内容
  • 缺乏有效的分割策略,要么是一整个文档全部提取,要么是词粒度的获取

对于第一点,一般是把表格中的内容识别成文本,这样喂给大模型的时候就会出现一连串数字或者字母,这无疑会增大模型的理解难度;对于第二点,则是需要按照指定的长度对文档进行切分,或者把词按照一定的规则拼接到一块,这同样会损失到文本自身的上下文信息。

而本文接下来介绍的Open-parse这个库可以直接从文本中提取出多个节点,每个节点就是一个chunk,已经分好了,因此无需再按照长度进行split,这样同时也比单独提取一个词再进行合并又简化了不少操作;同时还支持同时提取表格和文字,无需分开提取。

快速开始

安装

pip install openparse

使用pip进行安装,同时这个库依赖Pymupdfpdfminer等其他库,也会同时安装。

识别文字

pdf = "c:\\人口.pdf"
parser = openparse.DocumentParser()
parsed_basic_doc = parser.parse(pdf)
for node in parsed_basic_doc.nodes:
    node
    print('\n--------------------\n')

可以看到每一页的pdf被分成多个chunk,且还能保留原始文本中的加粗斜体等信息。

print(parsed_basic_doc.nodes[0])

elements=(TextElement(text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 ', lines=(LineElement(bbox=(56.64, 739.57, 232.44, 750.01), spans=(TextSpan(text='Aging Research ', is_bold=True, is_italic=False, size=9.0), TextSpan(text='老龄化研究', is_bold=False, is_italic=False, size=9.0), TextSpan(text=', 2022, 9(3), 26-34 ', is_bold=True, is_italic=False, size=9.0)), style=None, text='Aging Research老龄化研究, 2022, 9(3), 26-34'), LineElement(bbox=(56.65, 728.28, 348.95, 737.28), spans=(TextSpan(text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar ', is_bold=False, is_italic=False, size=9.0),), style=None, text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar '), LineElement(bbox=(56.64, 717.36, 225.23, 726.36), spans=(TextSpan(text='https://doi.org/10.12677/ar.2022.93004 ', is_bold=False, is_italic=False, size=9.0),), style=None, text='https://doi.org/10.12677/ar.2022.93004 ')), bbox=Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01), variant=<NodeVariant.TEXT: 'text'>, embed_text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '),) variant={'text'} tokens=66 bbox=[Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01)] text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '

通过打印出node,可以看出这种结构包含了原始文本中的元信息,包含文本的坐标、大小、是否加粗、是否斜体等。

识别表格内容

  • Pymupdf
  • Unitable
  • Table Transformer

openparse提供了三个方法来识别和提取表格中的内容,方法1是直接使用Pymupdf这个库的表格识别模块,因此准确率最差,但对硬件要求不高;其他的2个都是100mb左右的模型,如果用cpu来推理会比较耗时。

# defining the parser (table_args is a dict)
parser = openparse.DocumentParser(
    table_args={
        "parsing_algorithm": "table-transformers", # 或者其他两个方法
        "table_output_format": "html" # 以html格式返回表格内容,也可以选择md
    }
)

与前面直接识别文本类似,只需要加入table_args参数即可。

可以看到表格中的内容被很好的还原了

使用表格提取除了返回表格内容外,还会把正常的文本返回,这与Pymupdf等库只能选择返回文本还是只返回已有的表格不同。因此在不确定文本中含有什么内容时用这个方法会更加保险一点,对硬件的计算要求也不高。

语义相似

from openparse import processing, DocumentParser

semantic_pipeline = processing.SemanticIngestionPipeline(
    openai_api_key=OPEN_AI_KEY,
    model="text-embedding-3-large",
    min_tokens=64,
    max_tokens=1024,
)

parser = DocumentParser(
    processing_pipeline=semantic_pipeline,
)

openparse还支持端到端的方式对node数据进行向量化并聚类,只需要指定processing_pipeline为相应的embedding模型即可。但是目前仅支持OpenAI的模型,需要OPEN_AI_KEY才可以使用。虽然后续会更新其他模型,但目前想用的话需要自己修改这段代码的实现。

combine_parser = DocumentParser(
    processing_pipeline=semantic_pipeline,
    table_args={
        "parsing_algorithm": "table-transformers",
        "table_output_format": "html"
    }
    
)

同时,还能把语义相似和表格内容提取组合到一起使用,实现对表格内容提取的同时还能融合相似的片段。

总结

openparse这个库算是目前开源社区中比较优秀的文档分割处理库了,功能虽然全面,还是还有不少可以优化的地方,后续也会支持其他向量化模型,并且可以跟LlamaindexLangchain等框架无缝衔接,应该值得持续关注。

与【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取相似的内容:

【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取

前言 文档分割是一项具有挑战性的任务,它是任何知识库问答系统的基础。高质量的文档分割结果对于显著提升问答效果至关重要,但是目前大多数开源库的处理能力有限。 这些开源的库或者方法缺点大致可以罗列如下: 只能处理文本,无法提取表格中的内容 缺乏有效的分割策略,要么是一整个文档全部提取,要么是词粒度的获取

我对《RAG/大模型/非结构化数据知识库类产品》技术架构的思考、杂谈

1、前言 在6.28/29的稀土掘金开发者大会RAG专场上,我们公司CEO员外代表TorchV分享了我们在《RAG在企业应用中落地的难点与创新》 其中最后分享了两个观点: AI在应用场景落地时有三个特点:功能小、质量高、价值大 如果说做产品是把一横做好的话,那么去做企业落地服务就是一竖,从需求和方案

使用ChatGPT自动构建知识图谱

1.概述 本文将探讨利用OpenAI的gpt-3.5-turbo从原始文本构建知识图谱,通过LLM和RAG技术实现文本生成、问答和特定领域知识的高效提取,以获得有价值的洞察。在开始前,我们需要明确一些关键概念。 2.内容 2.1 什么是知识图谱? 知识图谱是一种语义网络,它表示和连接现实世界中的实体

检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统

检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统 什么是 RAG LLM 会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。 正是在这样的背景下,检索增强生成技术(Retrieval-Augm

利用英特尔 Gaudi 2 和至强 CPU 构建经济高效的企业级 RAG 应用

检索增强生成 (Retrieval Augmented Generation,RAG) 可将存储在外部数据库中的新鲜领域知识纳入大语言模型以增强其文本生成能力。其提供了一种将公司数据与训练期间语言模型学到的知识分开的方式,有助于我们在性能、准确性及安全隐私之间进行有效折衷。 通过本文,你将了解到英特

高级前端开发需要知道的 25 个 JavaScript 单行代码

1. 不使用临时变量来交换变量的值 2. 对象解构,让数据访问更便捷 3. 浅克隆对象 4. 合并对象 5. 清理数组 6. 将 NodeList 转换为数组 7. 检查数组是否满足指定条件 8. 将文本复制到剪贴板 9. 删除数组重复项 10. 取两个数组的交集 11. 求数组元素的总和 12. ...

.NET集成DeveloperSharp实现"高效分页"&"无主键分页"

DeveloperSharp系列近期又被制造业ERP、民航飞行App、建筑BIM、电力掌上营业厅、等多家大型采用,站在巨人的肩膀上你能走的更远。 支持.Net Core2.0及以上,支持.Net Framework4.0及以上 数据分页,几乎是任何应用系统的必备功能。但当数据量较大时,分页操作的效率

.NET集成DeveloperSharp实现http网络请求&与其它工具的比较

爆了,爆了,DeveloperSharp系列近期又被制造业ERP、民航飞行App、建筑BIM、电力掌上营业厅、等多家大型采用,站在巨人的肩膀上你能走的更远。 支持.Net Core2.0及以上,支持.Net Framework4.0及以上 http请求调用是开发中经常会用到的功能。在内,调用自有项目

Web Audio API 第6章 高级主题

高级主题 这一章涵盖了非常重要的主题,但比本书的其他部分稍微复杂一些。 我们会深入对声音添加音效,完全不通过任何音频缓冲来计算合成音效, 模拟不同声音环境的效果,还有关于空 3D 空间音频。 重要理论:双二阶滤波器 一个滤波可以增强或减弱声音频谱的某些部分。 直观地,在频域上它可以被表示为一个图表被

[转帖]高级JIT编译器选项 Advanced JIT Compiler Options

https://zhuanlan.zhihu.com/p/341374302 -XX:+AggressiveOpts 启用积极的性能优化功能, 这些功能有望在以后的版本中成为默认功能. 默认情况下, 此选项处于禁用状态, 并且不使用实验性能功能 Java’s -XX:+AggressiveOpts: