MATLAB人工神经网络ANN代码

matlab,人工神经网络,ann,代码 · 浏览次数 : 538

小编点评

**Code Summary:** The code performs an ANN cycle, which includes training, validation, and testing. It calculates and saves the model's accuracy at each stage. **Key Steps:** 1. **Data Preparation:** - Loads and prepares training, validation, and test data. - Sets the `epochs` and `goal` for the model. 2. **Model Training:** - Trains an ANN network using the `train` function. - Defines the network's architecture and training parameters. - Performs training, validation, and testing. 3. **Model Evaluation:** - Calculates the mean squared error (MSE) and Pearson's correlation coefficient (r) between the predicted and actual values. - Stores the MSE and r values for future reference. 4. **Model Storage:** - Saves the trained model parameters and predictions to a file. **Overall, this code demonstrates the following concepts:** - Neural network training - Data preparation and cleaning - Model training and optimization - Model evaluation - Model storage **Additional Notes:** - The code uses the `mse` metric to evaluate model accuracy. - It sets the `epochs` and `goal` parameters based on a given criteria. - The model is saved in a specific format (e.g., RF0417ANN0399.mat). - The code provides a summary of the trained model's accuracy at each stage.

正文

  本文介绍基于MATLAB实现人工神经网络ANN)回归的详细代码与操作。

  在之前的文章MATLAB实现随机森林(RF)回归与自变量影响程度分析中,我们对基于MATLAB随机森林(RF)回归与变量影响程度(重要性)排序的代码加以详细讲解与实践。本次我们继续基于MATLAB,对另一种常用的机器学习方法——神经网络方法加以代码实战。

  首先需要注明的是,在MATLAB中,我们可以直接基于“APP”中的“Neural Net Fitting”工具箱实现在无需代码的情况下,对神经网络算法加以运行。

  基于工具箱的神经网络方法虽然方便,但是一些参数不能调整;同时也不利于我们对算法、代码的理解。因此,本文不利用“Neural Net Fitting”工具箱,而是直接通过代码将神经网络方法加以运行——但是,本文的代码其实也是通过上述工具箱运行后生成的;而这种生成神经网络代码的方法也是MATLAB官方推荐的方式。

  另外,需要注意的是,本文直接进行神经网络算法的执行,省略了前期数据处理、训练集与测试集划分、精度衡量指标选取等。因此建议大家先将文章MATLAB实现随机森林(RF)回归与自变量影响程度分析阅读后,再阅读本文。

  本文分为两部分,首先是将代码分段、详细讲解,方便大家理解;随后是完整代码,方便大家自行尝试。

1 分解代码

1.1 循环准备

  由于机器学习往往需要多次执行,我们就在此先定义循环。

%% ANN Cycle Preparation

ANNRMSE=9999;
ANNRunNum=0;
ANNRMSEMatrix=[];
ANNrAllMatrix=[];
while ANNRMSE>400

  其中,ANNRMSE是初始的RMSEANNRunNum是神经网络算法当前运行的次数;ANNRMSEMatrix用来存储每一次神经网络运行后所得到的RMSE结果;ANNrAllMatrix用来存储每一次神经网络运行后所得到的皮尔逊相关系数结果;最后一句表示当所得到的模型RMSE>400时,则停止循环。

1.2 神经网络构建

  接下来,我们对神经网络的整体结构加以定义。

%% ANN

x=TrainVARI';
t=TrainYield';
trainFcn = 'trainlm';
hiddenLayerSize = [10 10 10];
ANNnet = fitnet(hiddenLayerSize,trainFcn);

  其中,TrainVARITrainYield分别是我这里训练数据的自变量(特征)与因变量(标签);trainFcn为神经网络所选用的训练函数方法名称,其名称与对应的方法对照如下表:

  hiddenLayerSize为神经网络所用隐层与各层神经元个数,[10 10 10]代表共有三层隐层,各层神经元个数分别为101010

1.3 数据处理

  接下来,对输入神经网络模型的数据加以处理。

ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.divideFcn = 'dividerand';
ANNnet.divideMode = 'sample';
ANNnet.divideParam.trainRatio = 0.6;
ANNnet.divideParam.valRatio = 0.4;
ANNnet.divideParam.testRatio = 0.0;

  其中,ANNnet.input.processFcnsANNnet.output.processFcns分别代表输入模型数据的处理方法,'removeconstantrows'表示删除在各样本中数值始终一致的特征列,'mapminmax'表示将数据归一化处理;divideFcn表示划分数据训练集、验证集与测试集的方法,'dividerand'表示依据所给定的比例随机划分;divideMode表示对数据划分的维度,我们这里选择'sample',也就是对样本进行划分;divideParam表示训练集、验证集与测试集所占比例,那么在这里,因为是直接用了先前随机森林方法(可以看这篇博客)中的数据划分方式,那么为了保证训练集、测试集的固定,我们就将divideParam.testRatio设置为0.0,然后将训练集与验证集比例划分为0.60.4

1.4 模型训练参数配置

  接下来对模型运行过程中的主要参数加以配置。

ANNnet.performFcn = 'mse';
ANNnet.trainParam.epochs=5000;
ANNnet.trainParam.goal=0.01;

  其中,performFcn为模型误差衡量函数,'mse'表示均方误差;trainParam.epochs表示训练时Epoch次数,trainParam.goal表示模型所要达到的精度要求(即模型运行到trainParam.epochs次时或误差小于trainParam.goal时将会停止运行)。

1.5 神经网络实现

  这一部分代码大多数与绘图、代码与GUI生成等相关,因此就不再一一解释了,大家可以直接运行。需要注意的是,train是模型训练函数。

% For a list of all plot functions type: help nnplot
ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
[ANNnet,tr] = train(ANNnet,x,t);
y = ANNnet(x);
e = gsubtract(t,y);
performance = perform(ANNnet,t,y);
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(ANNnet,trainTargets,y);
valPerformance = perform(ANNnet,valTargets,y);
testPerformance = perform(ANNnet,testTargets,y);
% view(net)
% Plots
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
% Deployment
% See the help for each generation function for more information.
if (false)
    % Generate MATLAB function for neural network for application
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder
    % tools, or simply to examine the calculations your trained neural
    % network performs.
    genFunction(ANNnet,'myNeuralNetworkFunction');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a matrix-only MATLAB function for neural network code
    % generation with MATLAB Coder tools.
    genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a Simulink diagram for simulation or deployment with.
    % Simulink Coder tools.
    gensim(ANNnet);
end

1.6 精度衡量

%% Accuracy of ANN

ANNPredictYield=sim(ANNnet,TestVARI')';
ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
ANNr=ANNrMatrix(1,2);
ANNRunNum=ANNRunNum+1;
ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
ANNrAllMatrix=[ANNrAllMatrix,ANNr];
disp(ANNRunNum);
end
disp(ANNRMSE);

  其中,ANNPredictYield为预测结果;ANNRMSEANNrMatrix分别为模型精度衡量指标RMSE与皮尔逊相关系数。结合本文1.1部分可知,我这里设置为当所得神经网络模型RMSE400以内时,将会停止循环;否则继续开始执行本文1.2部分至1.6部分的代码。

1.7 保存模型

  这一部分就不再赘述了,大家可以参考文章MATLAB实现随机森林(RF)回归与自变量影响程度分析

%% ANN Model Storage

ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
    'hiddenLayerSize');

2 完整代码

  完整代码如下:

%% ANN Cycle Preparation
ANNRMSE=9999;
ANNRunNum=0;
ANNRMSEMatrix=[];
ANNrAllMatrix=[];
while ANNRMSE>1000

%% ANN
x=TrainVARI';
t=TrainYield';
trainFcn = 'trainlm';
hiddenLayerSize = [10 10 10];
ANNnet = fitnet(hiddenLayerSize,trainFcn);
ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
ANNnet.divideFcn = 'dividerand';
ANNnet.divideMode = 'sample';
ANNnet.divideParam.trainRatio = 0.6;
ANNnet.divideParam.valRatio = 0.4;
ANNnet.divideParam.testRatio = 0.0;
ANNnet.performFcn = 'mse';
ANNnet.trainParam.epochs=5000;
ANNnet.trainParam.goal=0.01;
% For a list of all plot functions type: help nnplot
ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
[ANNnet,tr] = train(ANNnet,x,t);
y = ANNnet(x);
e = gsubtract(t,y);
performance = perform(ANNnet,t,y);
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(ANNnet,trainTargets,y);
valPerformance = perform(ANNnet,valTargets,y);
testPerformance = perform(ANNnet,testTargets,y);
% view(net)
% Plots
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
% Deployment
% See the help for each generation function for more information.
if (false)
    % Generate MATLAB function for neural network for application
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder
    % tools, or simply to examine the calculations your trained neural
    % network performs.
    genFunction(ANNnet,'myNeuralNetworkFunction');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a matrix-only MATLAB function for neural network code
    % generation with MATLAB Coder tools.
    genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
    y = myNeuralNetworkFunction(x);
end
if (false)
    % Generate a Simulink diagram for simulation or deployment with.
    % Simulink Coder tools.
    gensim(ANNnet);
end

%% Accuracy of ANN
ANNPredictYield=sim(ANNnet,TestVARI')';
ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
ANNr=ANNrMatrix(1,2);
ANNRunNum=ANNRunNum+1;
ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
ANNrAllMatrix=[ANNrAllMatrix,ANNr];
disp(ANNRunNum);
end
disp(ANNRMSE);

%% ANN Model Storage
ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'AreaPercent','InputOutput','nLeaf','nTree',...
    'RandomNumber','RFModel','RFPredictConfidenceInterval','RFPredictYield','RFr','RFRMSE',...
    'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
    'hiddenLayerSize');

  至此,大功告成。

与MATLAB人工神经网络ANN代码相似的内容:

MATLAB人工神经网络ANN代码

本文介绍基于MATLAB实现人工神经网络(ANN)回归的详细代码与操作~

MATLAB神经网络工具箱使用介绍

本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法。 在MATLAB人工神经网络ANN代码这篇文章中,我们介绍了MATLAB软件中神经网络(ANN)的纯代码实现;而在MATLAB软件中,其实基于神经网络拟合工具箱,就可以点点鼠标实现神经网络的回归。本文

机器学习(三)——K最临近方法构建分类模型(matlab)

K最临近(K-Nearest Neighbors,KNN)方法是一种简单且直观的分类和回归算法,主要用于分类任务。其基本原理是用到表决的方法,找到距离其最近的K个样本,然后通过K个样本的标签进行表决,预测结果给出的标签是表决多的一方。 在使用K最临近方法的时候,有两个方面可调: 一是K值的大小,K一

MATLAB实现随机森林(RF)回归与自变量影响程度分析

本文介绍基于MATLAB,利用随机森林(RF)算法实现回归预测,以及自变量重要性排序的操作~

MATLAB计算变异函数并绘制经验半方差图

本文介绍基于MATLAB求取空间数据的变异函数,并绘制经验半方差图的方法~

Matlab导入多个.mat文件并画图的过程详解

matlab导入多个.mat文件进行作图的过程详解,包括导入.mat文件、plot常用设置、图例画法、子图画法

机器学习(四)——Lasso线性回归预测构建分类模型(matlab)

Lasso线性回归(Least Absolute Shrinkage and Selection Operator)是一种能够进行特征选择和正则化的线性回归方法。其重要的思想是L1正则化:其基本原理为在损失函数中加上模型权重系数的绝对值,要想让模型的拟合效果比较好,就要使损失函数尽可能的小,因此这样

机器学习(一)——递归特征消除法实现SVM(matlab)

机器学习方法对多维特征数据进行分类:本文用到非常经典的机器学习方法,使用递归特征消除进行特征选择,使用支持向量机构建分类模型,使用留一交叉验证的方法来评判模型的性能。 构建模型:支持向量机(Support Vector Machine,SVM); 特征选择:递归特征消除(Recursive Feat

全局多项式(趋势面)与IDW逆距离加权插值:MATLAB代码

本文介绍基于MATLAB实现全局多项式插值法与逆距离加权法的空间插值的方法,并对不同插值方法结果加以对比分析~

CIC滤波器仿真与实验过程及结果记录

整理于2023-10-08 0.0 前言: https://www.cnblogs.com/luxzhi/p/17734148.html 前面介绍了使用matlab中的Filter Designer工具箱进行CIC抽取滤波器设计的仿真过程与结果。下面在前面的基础上针对现有的【正点原子ZYNQ】平台,