Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据

python,gdal,读取,modis,遥感,影像,结合,质量,控制,qc,波段,掩膜,数据 · 浏览次数 : 210

小编点评

## Postgraduate LAI Glass RT Lab Data Processing Script This script provides a comprehensive overview of data processing steps for a Postgraduate project involving LAI (Liquid Argon Imaging) glass RT data. **File path definitions:** * `file_path`: Path to the main data directory containing various file types. * `out_file_path`: Path to save the final output dataset. * `rt_file_list`: List of file names within the `rt_path` directory, containing the RT data files. * `drt_out_file_path`: Path to save the output DRT (Digital Raster Terrain) dataset. * `eco_out_file_path`: Path to save the output eco-physical property dataset. * `wat_out_file_path`: Path to save the output water vapor density dataset. * `tim_out_file_path`: Path to save the output temperature dataset. **Script steps:** 1. **Data reading and preparation:** * Iterate through the `rt_file_list` and read data using appropriate libraries. * Convert data type to suitable formats (e.g., `float` for LAI intensity, `int` for other values). * Merge and pre-process the data into a single dataframe. 2. **Data cleaning and preparation:** * Identify and handle missing values. * Calculate relevant statistical and descriptive statistics. * Normalize data to ensure consistent units and ranges. 3. **Generating DRT dataset:** * Extract relevant bands from the data dataframe. * Combine the bands into a single raster dataset with appropriate projections and geotextures. 4. **Generating Eco-physical property dataset:** * Extract relevant bands from the data dataframe. * Combine the bands into a separate raster dataset with appropriate projections and geotextures. 5. **Generating Water Vapor Density dataset:** * Extract relevant bands from the data dataframe. * Combine the bands into a separate raster dataset with appropriate projections and geotextures. 6. **Generating Temperature dataset:** * Extract relevant bands from the data dataframe. * Combine the bands into a separate raster dataset with appropriate projections and geotextures. 7. **Outputting final datasets:** * Create output datasets for DRT, eco-physical property, water vapor density, and temperature. * Specify the output dimensions, projections, and data types for each dataset. * Write the data arrays to the respective output files. 8. **Closing file pointers:** * Release memory and resources used by various data structures. **Additional notes:** * This script provides a general framework and can be modified to suit specific project requirements. * Specific details of data reading, processing, and output can be further customized based on the data format and project specifications. * Ensure that the input and output file formats are compatible with the chosen data analysis software.

正文

  本文介绍基于PythonGDAL模块,实现MODIS遥感影像数据的读取、计算,并基于质量控制QC波段进行图像掩膜的方法。

  前期的文章Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜详细介绍了基于Python语言gdal等模块实现遥感影像栅格数据的读取,以及基于质量评估(QA)波段实现栅格像元筛选与掩膜的全部操作。而在本文,我们依据前述这一篇博客的代码,结合大家更为熟悉的MODIS系列遥感影像产品,基于其质量评估波段进行具体的对照讲解。也就是说,本文重点不在于代码的讲解(具体代码在前述这一篇博客中已经很详细地介绍了),而是将上述代码在更为具体的一个实践中加以应用,告诉大家该如何选择波段、处理质量评估QA波段并进行筛选操作等。同时,这里还有一点需要注意:在MODIS系列遥感影像中,质量评估波段更应该称为质量控制波段,因为其官方手册中将其写作Quality Control,因此后文就写作质量控制波段或QC波段。

  首先,需要下载好对应的MODIS数据,大家可以依据文章批量下载MODIS遥感影像:基于LAADS DAAC的方法中的方法进行下载。本文就以一景MODISLAI产品——MCD15A3H产品为例进行操作。

  下载后,打开HDF文件可以看到,其具有很多波段,同时包括质量控制QC波段;且在FPARLAI波段中,像元数值方面还具有精度较低的像元值、填充值等无效数值。上述这些都需要我们在读取数据时加以识别、处理与筛选。

  由于MODIS系列遥感影像产品种类较多,不同产品之间的属性差异较大;因此建议大家每次使用一种MODIS产品时,都到官网查看其基本信息,有需要的话还可以在官网下载对应产品的用户手册。前面提到,本文所用产品为MCD15A3H,因此可以在其官网查阅其基本信息或下载用户手册查看更为详细的产品属性。

  例如,下图所示即为用户手册中关于这一产品一景影像中波段分布情况与每一个波段具体信息的介绍表格;其中包括了波段含义、数据类型、填充值范围、有效值范围与缩放系数等关键参数,这些对于后期我们用gdal读取.hdf格式栅格文件而言具有重要意义。

  接下来,质量控制QC波段同样是执行栅格读取操作前有必要了解的信息。下图所示即为用户手册中关于这一产品一景影像中质量控制QC波段具体信息介绍的表格,其中包含了当前一景影像中FPARLAI产品的每一个像元所对应的算法、传感器、云覆盖等信息。这里需要注意的是:在MCD15A3H产品中是有2个质量控制QC波段的,这个是第一个QC,而第二个QC主要包括水陆区域、冰雪区域、气溶胶等信息,本文中暂且不涉及第二个QC

  其中,由上表可知,QC波段的信息一共是由07共8个比特位(即Bit No.)组成,其中,由若干个比特位又可以组成Bit-word,每一个Bit-word就代表某一种QC波段信息。结合上图,我们可以对照下图这样一个实例进行理解:

  结合以上基本信息,我们已经对MCD15A3H产品的基本信息有了一定了解。接下来就可以进行栅格数据的读取与处理、筛选了。

  在这里需要注意的是,之前的两篇文章Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜以及Python批量读取HDF多波段栅格数据并绘制像元直方图已经对本次所要用到的大部分需求与代码加以实现并进行了详细讲解,这里就不再赘述。本文代码所实现功能与上述第一篇博客中的需求一致,唯一不同的是将GLASS产品更改为了MCD15A3H产品,且仅需对MCD15A3H产品的主算法像元加以做差计算(也就是筛选出MCD15A3H产品中第一个QC波段对应二进制数的第一位为0的像元,其它像元就不用参与差值计算了)。

  具体代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 25 14:57:45 2021

@author: fkxxgis
"""

import os
import copy
import numpy as np
from osgeo import gdal

rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/RT_LAI/"
mcd15_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/mcd15A3H/"
out_file_path="G:/Postgraduate/LAI_Glass_RTlab/Test_DRT/"

rt_file_list=os.listdir(rt_file_path)
for rt_file in rt_file_list:
    rt_file_split=rt_file.split("_")
    rt_hv=rt_file_split[3][:-4]
    
    mcd15_file_list=os.listdir(mcd15_file_path)
    for mcd15_file in mcd15_file_list:
        if rt_hv in mcd15_file:
            rt_file_tif_path=rt_file_path+rt_file
            mcd15_file_tif_path=mcd15_file_path+mcd15_file
            
            drt_out_file_path=out_file_path+"drt/"
            if not os.path.exists(drt_out_file_path):
                os.makedirs(drt_out_file_path)
            drt_out_file_tif_path=drt_out_file_path+rt_hv+".tif"
            
            eco_out_file_path=out_file_path+"eco/"
            if not os.path.exists(eco_out_file_path):
                os.makedirs(eco_out_file_path)
            eco_out_file_tif_path=eco_out_file_path+rt_hv+".tif"
            
            wat_out_file_path=out_file_path+"wat/"
            if not os.path.exists(wat_out_file_path):
                os.makedirs(wat_out_file_path)
            wat_out_file_tif_path=wat_out_file_path+rt_hv+".tif"
            
            tim_out_file_path=out_file_path+"tim/"
            if not os.path.exists(tim_out_file_path):
                os.makedirs(tim_out_file_path)
            tim_out_file_tif_path=tim_out_file_path+rt_hv+".tif"
            
            rt_raster=gdal.Open(rt_file_tif_path)
            rt_raster_array=rt_raster.ReadAsArray()
            rt_lai_array=rt_raster_array[0]
            rt_qa_array=rt_raster_array[1]
            rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array)
            rt_lai_array_fin=rt_lai_array_mask*0.001
            
            mcd15_raster=gdal.Open(mcd15_file_tif_path)
            mcd15_sub_dataset=mcd15_raster.GetSubDatasets()
            # for sub_dataset in mcd15_sub_dataset:
            #     print(sub_dataset[1])
            # print(mcd15_sub_dataset[1][1])
            # print(mcd15_sub_dataset[2][1])
            mcd15_sub_lai=gdal.Open(mcd15_sub_dataset[1][0])
            mcd15_sub_qc=gdal.Open(mcd15_sub_dataset[2][0])
            mcd15_lai_array=mcd15_sub_lai.ReadAsArray()
            mcd15_qc_array=mcd15_sub_qc.ReadAsArray()
            mcd15_lai_array_mask=np.where(mcd15_lai_array>248,np.nan,mcd15_lai_array)
            mcd15_lai_array_fin=mcd15_lai_array_mask*0.1
            
            rt_qa_array_bin=copy.copy(rt_qa_array)
            rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape
            for i in range(rt_qa_array_row):
                for j in range(rt_qa_array_col):
                    rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:]
            
            mcd15_qc_array_bin=copy.copy(mcd15_qc_array)
            mcd15_qc_array_row,mcd15_qc_array_col=mcd15_qc_array.shape
            for i in range(mcd15_qc_array_row):
                for j in range(mcd15_qc_array_col):
                    mcd15_qc_array_bin[i][j]="{:08b}".format(mcd15_qc_array[i][j])[-1:]
            
            mcd15_lai_main_array=np.where(mcd15_qc_array_bin==1,np.nan,mcd15_lai_array_fin)
            
            lai_dif=rt_lai_array_fin-mcd15_lai_main_array
            lai_dif=lai_dif*1000
            
            drt_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11),
                                       np.nan,lai_dif)
            eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111),
                                       np.nan,lai_dif)
            wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011),
                                       np.nan,lai_dif)
            tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111),
                                       np.nan,lai_dif)
            
            row=rt_raster.RasterYSize
            col=rt_raster.RasterXSize
            geotransform=rt_raster.GetGeoTransform()
            projection=rt_raster.GetProjection()
            
            # 输出为int格式后,所得结果中0就是NoData
            driver=gdal.GetDriverByName("Gtiff")
            out_drt_lai=driver.Create(drt_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_drt_lai.SetGeoTransform(geotransform)
            out_drt_lai.SetProjection(projection)
            out_drt_lai.GetRasterBand(1).WriteArray(drt_lai_dif_array)
            out_drt_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_eco_lai.SetGeoTransform(geotransform)
            out_eco_lai.SetProjection(projection)
            out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array)
            out_eco_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_wat_lai.SetGeoTransform(geotransform)
            out_wat_lai.SetProjection(projection)
            out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array)
            out_wat_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Int16)
            out_tim_lai.SetGeoTransform(geotransform)
            out_tim_lai.SetProjection(projection)
            out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array)
            out_tim_lai=None
            
            print(rt_hv)

  至此,大功告成。

与Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据相似的内容:

Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据

本文介绍基于Python中GDAL模块,实现MODIS遥感影像数据的读取、计算,并基于质量控制QC波段进行图像掩膜的方法~

Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜

本文介绍基于Python语言中gdal模块,对遥感影像数据进行栅格读取与计算,同时基于QA波段对像元加以筛选、掩膜的操作~

Python批量读取HDF多波段栅格数据并绘制像元直方图

本文介绍基于Python语言gdal模块,实现多波段HDF栅格图像文件的读取、处理与像元值可视化(直方图绘制)等操作~

Python GDAL库在Anaconda环境中的配置

本文介绍在Anaconda环境下,安装Python中栅格、矢量等地理数据处理库GDAL的方法~

Python遥感影像叠加分析:基于一景数据提取另一数据

本文介绍基于Python中GDAL模块,实现基于一景栅格影像,对另一景栅格影像的像元数值加以叠加提取的方法。 本文期望实现的需求为:现有一景表示6种不同植被类型的.tif格式栅格数据,以及另一景与前述栅格数据同区域的、表示植被参数的.tif格式栅格数据;我们希望基于前者中的植被类型数据,分别提取6种

Python批量绘制遥感影像数据的直方图

本文介绍基于Python中gdal模块,实现对大量栅格图像批量绘制直方图的方法~

音频文件降噪及python示例

操作系统 :Windows 10_x64 Python版本:3.9.2 noisereduce版本:3.0.2 从事音频相关工作,大概率会碰到降噪问题,今天整理下之前学习音频文件降噪的笔记,并提供Audacity和python示例。 我将从以下几个方面展开: noisereduce库介绍 使用Aud

Python按条件筛选、剔除表格数据并绘制剔除前后的直方图

本文介绍基于Python语言,读取Excel表格文件数据,以其中某一列数据的值为标准,对于这一列数据处于指定范围的所有行,再用其他几列数据的数值,加以数据筛选与剔除;同时,对筛选前、后的数据分别绘制若干直方图,并将结果数据导出保存为一个新的Excel表格文件的方法~

我从 Python 潮流周刊提取了 800 个链接,精选文章、开源项目、播客视频集锦

你好,我是豌豆花下猫。前几天,我重新整理了 Python 潮流周刊的往期分享,推出了第 1 季的图文版电子书,受到了很多读者的一致好评。 但是,合集和电子书的篇幅很长,阅读起来要花不少时间。所以,为了方便大家阅读,我打算将合集进一步整理,分门别类将原始内容的标题罗列出来。 本文总计约 800 个链接

从基础到高级应用,详解用Python实现容器化和微服务架构

本文分享自华为云社区《Python微服务与容器化实践详解【从基础到高级应用】》,作者: 柠檬味拥抱。 Python中的容器化和微服务架构实践 在现代软件开发中,容器化和微服务架构已经成为主流。容器化技术使得应用程序可以在任何环境中一致运行,而微服务架构通过将应用拆分成多个独立的服务,从而提升了系统的