Python忽略NoData计算多张遥感影像的像元平均值:whitebox库

python,忽略,nodata,计算,多张,遥感,影像,平均值,whitebox · 浏览次数 : 183

小编点评

**基于whitebox模块的多时序平均值求取方法** 本文介绍了一种基于Python中whitebox模块实现多时相遥感影像数据逐像元平均值的求取方法。该方法避免了文章Python ArcPy批量计算多时相遥感影像的各像元平均值中问题,即对于任意一个像元,只要该像元在任意一个时相的图像中是无效值(即为NoData),那么该像元在最终求出的平均值结果图中像素值也会是无效值NoData。 **代码步骤:** 1. 下载并安装whitebox模块。 2. 获取路径下原有的所有.tif格式图像文件的文件名。 3. 遍历文件名,并通过简单的判断语句确定是否已经读取完毕的年份。 4. 如果已读取完毕,计算该年份的所有图像的平均值并存储在结果图像中。 5. 如果还没读取完毕,继续遍历,直到所有年份图像都处理完毕。 6. 最后,验证是否已经遍历到了文件夹中的最后一个图像文件。 7. 如果已遍历到最后一个文件,计算该文件的所有波段的平均值并存储在结果图层中。 **注意:** * 代码运行完毕后,可查看求解平均值后的结果图层。 * 如果计算平均值前的图层具有两个或两个以上的波段,那么得到的结果图层整体看还好,但放大后会发现条带状的错误。 * 如果计算平均值前的图层仅具有一个波段的话,就不会出现这种问题。

正文

  本文介绍基于Pythonwhitebox模块,对大量长时间序列栅格遥感影像的每一个像元进行忽略NoData值多时序平均值求取。

  在文章Python ArcPy批量计算多时相遥感影像的各像元平均值中,我们介绍了基于PythonArcpy模块实现多时相遥感影像数据的平均值求取方法。但是这一方法具有一个问题,即对于任意一个像元,只要该像元在任意一个时相的图像中是无效值(即为NoData),那么该像元在最终求出的平均值结果图中像素值也将会是无效值NoData。这就导致在我们最终计算得到的平均值结果图层中,具有很多空白区域(像素值为NoData的区域)。

  为了解决这一问题,这里我们再介绍一种基于Python中另一个地理空间数据分析库——whitebox,实现多时像遥感影像数据逐像元平均值的求取方法。

  首先,需要下载并安装whitebox这一模块。如果大家电脑中已经有了Anaconda环境,就可以直接按照Python地理分析库whitebox在Anaconda中的配置这篇文章中介绍的方法下载、安装whitebox

  本文要实现的需求和文章Python ArcPy批量计算多时相遥感影像的各像元平均值中的一致,这里就不再赘述。本文所需用到的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Sun Apr 17 15:04:29 2022

@author: fkxxgis
"""

import glob
from whitebox import WhiteboxTools

tif_file_path="E:/LST/Data/MODIS/test/"
average_file_path="E:/LST/Data/MODIS/06_Average/"

wbt=WhiteboxTools()
wbt.work_dir=tif_file_path

tif_file_name=glob.glob(tif_file_path+"*.tif")
tif_file_year=tif_file_name[0][-18:-14]
one_year_tif_list=[]

for tif_file in tif_file_name:
    if tif_file[-18:-14]==tif_file_year:
        one_year_tif_list.append(tif_file)
        tif_file_temp=tif_file
        if tif_file==tif_file_name[len(tif_file_name)-1]:
            wbt.average_overlay(inputs=';'.join(one_year_tif_list),
                                output=average_file_path+tif_file_year+"_Ave.tif")
    else:
        wbt.average_overlay(inputs=';'.join(one_year_tif_list),
                            output=average_file_path+tif_file_year+"_Ave.tif")
        one_year_tif_list=[]
        one_year_tif_list.append(tif_file)
        tif_file_year=tif_file[-18:-14]

  其中,tif_file_path是原有计算平均值前遥感图像的保存路径,average_file_path是我们新生成的求取平均值后遥感影像的保存路径,也就是结果保存路径。

  上述代码的整体思路其实和文章Python ArcPy批量计算多时相遥感影像的各像元平均值这篇文章是非常类似的。首先,同样需要在资源管理器中,将tif_file_path路径下的各文件以“名称”排序的方式进行排序;随后,利用arcpy.ListRasters()函数,获取路径下原有的全部.tif格式的图像文件,并截取第一个文件的部分文件名,从而获取其成像时间的具体年份。

  接下来,遍历tif_file_path路径下全部.tif格式图像文件。其中,我们通过一个简单的判断语句if tif_file[0:4]==tif_file_year:,来确定某一年的遥感影像是否已经读取完毕——如果已经读取完毕,例如假如2001年成像的8幅遥感影像都已经遍历过了,那么就对这8景遥感影像加以逐像元的平均值求取,并开始对下一个年份(即2005年)成像的遥感影像继续加以计算;如果还没有读取完毕,例如假如2001年成像的8幅遥感影像目前仅遍历到了第5幅,那么就不求平均值,继续往下遍历,直到遍历完2001年成像的8幅遥感影像。

  这里相信大家也看到了为什么我们要在前期先将文件夹中的文件按照“名称”排序——是为了保证同一年成像的所有遥感影像都排列在一起,遍历时只要遇到一个新的年份,程序就知道上一个年份的所有图像都已经遍历完毕了,就可以将上一个年份的所有栅格图像加以平均值求取。

  本文代码和前期博客中代码不一样的部分就在于,这里是用到whitebox模块而非arcpy模块来实现同一年份遥感影像的逐像元平均值求取。在这里,wbt.average_overlay()函数就是我们实现这一步骤的关键,其中inputs参数表示需要进行平均值计算的同一年份的所有遥感影像,output表示求取平均值后得到的结果图像。

  最后,通过if tif_file==tif_file_name[len(tif_file_name)-1]:这个判断,来确认是否目前已经遍历到文件夹中的最后一个图像文件。如果是的话,就需要将当前成像年份的所有图像进行平均值的求取,并宣告代码完成运行。

  这里需要注意,由于我们在此没有用到arcpy模块,因此代码也就不一定非要在 IDLE (Python GUI) 中运行了,常见的编译器都可以运行。在代码运行过程中,还可以看到具体运行情况与进度。

  代码运行完毕后,即可得到求解平均值后的结果图层。

  最后还有一个问题——在我用这一代码进行实践后发现,如果计算平均值前的图层具有两个或两个以上的波段,那么得到的结果图层整体看还好,如下图所示。

  但放大后,会发现得到的结果呈现出如下所示的条带状。

  而如果计算平均值前的图层仅具有一个波段的话,就不会出现这种问题;如下图所示。

  因此,大家在使用本文的代码对大量长时间序列栅格遥感影像的每一个像元进行忽略Nodata值多时序平均值求取时,一定注意输入图层要仅含有一个波段;否则结果就会出现条带状的错误。

与Python忽略NoData计算多张遥感影像的像元平均值:whitebox库相似的内容:

Python忽略NoData计算多张遥感影像的像元平均值:whitebox库

本文介绍基于Python中whitebox模块,对大量长时间序列栅格遥感影像的每一个像元进行忽略NoData值的多时序平均值求取~

Python装饰器实例讲解(二)

Python装饰器实例讲解(二) Python装饰器实例讲解(一) 你最好去看下第一篇,虽然也不是紧密的链接在一起 参考B站码农高天的视频,大家喜欢看视频可以跳转忽略本文:https://www.bilibili.com/video/BV19U4y1d79C 一键三连哦 本文的知识点主要是 ​ 类装

好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。

音频文件降噪及python示例

操作系统 :Windows 10_x64 Python版本:3.9.2 noisereduce版本:3.0.2 从事音频相关工作,大概率会碰到降噪问题,今天整理下之前学习音频文件降噪的笔记,并提供Audacity和python示例。 我将从以下几个方面展开: noisereduce库介绍 使用Aud

Python按条件筛选、剔除表格数据并绘制剔除前后的直方图

本文介绍基于Python语言,读取Excel表格文件数据,以其中某一列数据的值为标准,对于这一列数据处于指定范围的所有行,再用其他几列数据的数值,加以数据筛选与剔除;同时,对筛选前、后的数据分别绘制若干直方图,并将结果数据导出保存为一个新的Excel表格文件的方法~

我从 Python 潮流周刊提取了 800 个链接,精选文章、开源项目、播客视频集锦

你好,我是豌豆花下猫。前几天,我重新整理了 Python 潮流周刊的往期分享,推出了第 1 季的图文版电子书,受到了很多读者的一致好评。 但是,合集和电子书的篇幅很长,阅读起来要花不少时间。所以,为了方便大家阅读,我打算将合集进一步整理,分门别类将原始内容的标题罗列出来。 本文总计约 800 个链接

从基础到高级应用,详解用Python实现容器化和微服务架构

本文分享自华为云社区《Python微服务与容器化实践详解【从基础到高级应用】》,作者: 柠檬味拥抱。 Python中的容器化和微服务架构实践 在现代软件开发中,容器化和微服务架构已经成为主流。容器化技术使得应用程序可以在任何环境中一致运行,而微服务架构通过将应用拆分成多个独立的服务,从而提升了系统的

Python循环控制

本文介绍了Python编程语言中关于for循环和if条件控制的一些基本使用。包含了单层循环的退出机制和多层循环的退出机制,使得我们在满足特定条件时,可以直接结束多层循环。

Python 潮流周刊#60:Python 的包管理工具真是多啊(摘要)

本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进 Python 技术,并增长职业和副业的收入。 本期周刊分享了 13 篇文章,13 个开源项目,全文 2300 字。 重要提醒:

推荐一款Python接口自动化测试数据提取分析神器!

1、引言 在处理JSON数据时,我们常常需要提取、筛选或者变换数据。手动编写这些操作的代码不仅繁琐,而且容易出错。Python作为一个功能强大的编程语言,拥有丰富的库和工具来处理这些数据。今天,将介绍一个实用的Python库——JMESPath,它为提取JSON数据提供了简洁而强大的语法。 2、JM