聊聊自然语言处理NLP

聊聊,自然语言,处理,nlp · 浏览次数 : 219

小编点评

**自然语言处理(NLP)的正式定义:** 自然语言处理(NLP)是一个使用计算机科学、人工智能(AI)和形式语言学概念来分析自然语言的研究领域。 **自然语言处理(NLP)的定义:** 自然语言处理是一组工具,用于从自然语言源(如网页和文本文档)获取有意义和有用的信息。

正文

概述

自然语言处理(NLP)的正式定义:是一个使用计算机科学、人工智能(AI)和形式语言学概念来分析自然语言的研究领域。不太正式的定义表明:它是一组工具,用于从自然语言源(如web页面和文本文档)获取有意义和有用的信息。
NLP工具的实现一般是基于机器学习与深度学习、其它算法(Lucene Core);基于前两者的实现是比较流行且持续在探索演进。

NLP任务概述


NLP需要一组任务的组合,如下列举所示:

分词

文本可以分解为许多不同类型的元素,如单词、句子和段落(称为词或词项),并可选地对这些词执行附加处理;这种额外的处理可以包括词干提取、词元化(也称为词形还原)、停用词删除、同义词扩展和文本转换为小写。而分词一般都是基于各种分词器;比如Lucene、基于机器学习与深度学习的框架。

文本断句

文本断句也可以理解为文本识别。即识别句子(即断句);此项功能是有用的,原因有很多。一些NLP任务,如词性标注和实体提取,是针对单个句子的。对话式的应用程序还需要识别单独的句子。为了使这些过程正确工作,必须正确地确定句子边界。
将文本分割成语句也称为语句边界消歧(Sentence Boundary Disambiguation,SBD)。文本断句的常用方法包括使用一组规则或训练一个模型来检测它们。

特征工程

即用特征表示文本。特征工程在NLP应用开发中起着至关重要的作用,这对于机器学习非常重要,特别是在基于预测的模型中。它是利用领域知识将原始数据转换成特征的过程,从而使机器学习算法能够工作。特征使我们能够更集中地查看原始数据。一旦确定了特征,就进行特征选择以减少数据的维数。常用的框架及算法:

  • n-gram
  • 词嵌入
  • Glove
  • word2Vec
  • 降维
  • 主成分分析
  • t-SNE

命名实体识别

识别人和事物的过程称为命名实体识别(NER)。实体(诸如人物和地点等)与具有名称的类别相关联,而这些名称识别了它们是什么。
NER过程涉及两个任务:

  • 实体检测
  • 实体分类

检测是指在文本中找到实体的位置。一旦找到它,确定被发现的实体是什么类型非常重要。这两个任务完成后,其结果可以用来解决其他任务,如搜索和确定文本的含义。例如,任务可能包括从电影或书评识别名字,并帮助找到可能感兴趣的其他电影或书籍。提取位置信息有助于对附近的服务提供参考。

词性标注

标注是将描述分配给词项或部分文本的过程。此描述称为标签。词性标注是将词性标签分配给词项的过程。这个过程是检测词性的核心。
一般的标注过程包括标记文本、确定可能的标签和解决歧义标签。算法用于进行词性标识(标注)。一般有两种方法。

  • 基于规则:基于规则的标注器使用一组规则、单词词典和可能的标签。当一个单词有多个标签时可以使用这些规则。规则通常使用单词的上下文来选择标签。
  • 基于随机域:基于随机域的标注器要么是基于马尔可夫模型,要么是基于线索的,使用决策树或最大熵。马尔可夫模型是有限状态机,其中每个状态都有两个概率分布。其目的是为句子找到最优的标签序列。还可以使用隐马尔可夫模型(Hidden Markov Model,HMM)。在这些模型中,状态转换是不可见的。

对句子进行适当的标注可以提高后续处理任务的质量,可用于许多后续任务,如问题分析、文本情感分析等。

分类

分类涉及为文本或文档中找到的信息分配标签。当过程发生时,这些标签可能已知,也可能未知。当标签已知时,这个过程称为分类。当标签未知时,该过程称为聚集。
文本分类用于多种目的:垃圾邮件检测、著作权归属、情感分析、年龄和性别识别、确定文档的主题、语言识别等。
有两种基本的文本分类技术:

  • 基于规则的分类
  • 有监督的机器学习

基于规则的分类使用单词和其他属性的组合,这些属性是根据专家精心设计的规则组织起来的。这些方法非常有效,但是创建它们是一个非常耗时的过程。有监督的机器学习(Supervised machine learning,SML)采用一组带注释的训练文档来创建模型。该模型通常称为分类器。有许多不同的机器学习技术,包括朴素贝叶斯、支持向量机(Support Vector Machine,SVM)和k近邻算法等。

关系提取

关系提取是标识文本中存在的关系的过程。
实体之间(例如句子的主语和它的宾语、其他实体,或者它的行为之间)存在各种关系。我们可能还想确定关系并以结构化的形式呈现它们。我们可以使用这些信息来显示结果,以供人们立即使用,或者格式化关系,以便更好地将它们用于后续任务。
提取的关系可以用于多种目的,包括:

  • 建立知识库
  • 创建目录
  • 产品搜索
  • 专利分析
  • 股票分析
  • 情报分析

有许多可用的技术来提取关系。可分为如下几种:

  • 手工方式
  • 监督方法
  • 半监督方法或无监督方法
  • 引导方法
  • 远程监督方法
  • 无监督的方法

参考

《Java自然语言处理(原书第2版)》

与聊聊自然语言处理NLP相似的内容:

聊聊自然语言处理NLP

## 概述 自然语言处理(NLP)的正式定义:是一个使用计算机科学、人工智能(AI)和形式语言学概念来分析自然语言的研究领域。不太正式的定义表明:它是一组工具,用于从自然语言源(如web页面和文本文档)获取有意义和有用的信息。NLP工具的实现一般是基于机器学习与深度学习、其它算法(Lucene Co

[转帖]聊聊Chat GPT-1到GPT-4的发展历程

http://blog.itpub.net/69925873/viewspace-2935360/ OpenAI的Generative Pre-trained Transformer(GPT)模型通过引入非常强大的语言模型,在自然语言处理(NLP)领域引起了巨大震动。这些模型可以执行各种NLP任务,

基于ChatGPT用AI实现自然对话

1.概述 ChatGPT是当前自然语言处理领域的重要进展之一,通过预训练和微调的方式,ChatGPT可以生成高质量的文本,可应用于多种场景,如智能客服、聊天机器人、语音助手等。本文将详细介绍ChatGPT的原理、实战演练和流程图,帮助读者更好地理解ChatGPT技术的应用和优势。 2.内容 在当今快

介绍ChatGPT:基于GPT-3.5的强大自然语言处理工具

ChatGPT是一个基于GPT-3.5架构的自然语言处理工具,它具有文本生成、文本分类、对话生成等多种能力。作为一种强大的自然语言处理工具,ChatGPT可以应用于智能客服、智能问答、内容创作等多个领域。如果您对ChatGPT感兴趣,可以通过关注本公众号了解更多信息,并体验基于ChatGPT的小程序提供的智能聊天和问答服务。

ChatGPT搭建AI网站实战

1.概述 ChatGPT是一款基于GPT-3.5架构的大型语言模型,它能够进行自然语言处理和生成对话等任务。作为一款智能化的聊天机器人,ChatGPT有着广泛的应用场景,如在线客服、智能助手、个性化推荐等。今天笔者给大家分享一下如何使用ChatGPT的API模型快速搭建一个AI网站。 2.内容 在实

探索 SK 示例 -- GitHub 存储库中的机器人

微软 3月22日 一篇文章“Semantic-kernel 嵌入和记忆:使用聊天UI探索GitHub Repos”[1] ,文章中进行了展示了嵌入,该文章解释了他们如何帮助开发人员提出有关GitHub存储库的问题或使用自然语言查询探索GitHub存储库。与嵌入一起,这是在SK存储器[2](嵌入集合)

把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10

就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑。这是一款无与伦比、超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的语言生成能力。

推荐一枚宝藏Up主,顺便聊聊感想

众所周知,B站是学习网站 最近发现一宝藏Up主,主要做科普,主题包括但不限于:大模型的底层算法、量子计算底层原理和硬件设计,以及其他物理或者自然科学主题,总体偏向于理工科。 值得推荐的理由:Up主对底层技术的了解非常透彻,因此举的例子也非常生动(即使如傅里叶变换这类复杂的数学公式,也能用生活中的

Golang channel底层是如何实现的?(深度好文)

Go语言为了方便使用者,提供了简单、安全的协程数据同步和通信机制,channel。那我们知道channel底层是如何实现的吗?今天k哥就来聊聊channel的底层实现原理。同时,为了验证我们是否掌握了channel的实现原理,本文也收集了channel的高频面试题,理解了原理,面试题自然不在话下。

京东云开发者|ElasticSearch降本增效常见的方法

Elasticsearch在db_ranking 的排名又(双叒叕)上升了一位,如图1-1所示;由此可见es在存储领域已经蔚然成风且占有非常重要的地位。随着Elasticsearch越来越受欢迎,企业花费在ES建设上的成本自然也不少。那如何减少ES的成本呢?今天我们就特地来聊聊ES降本增效的常见方法。