通过模仿学会Python爬虫(一):零基础上手

通过,模仿,学会,python,爬虫,基础,上手 · 浏览次数 : 82

小编点评

**爬虫代码** ```python import requests from bs4 import BeautifulSoup import xlwt # 创建Excel文件对象 workbook = xlwt.Workbook(encoding='utf-8') worksheet = workbook.add_sheet('豆瓣电影Top250') # 定义排名页面的URL url = 'https://www.kugou.com/yy/rank/home/1-6666.html?from=rank' # 发送请求并获取响应 r = requests.get(url, headers=headers) # 解析HTML页面 soup = BeautifulSoup(r.text, 'html.parser') # 定位歌曲排行榜列表 song_list = soup.find('div', {'class': 'pc_temp_songlist'}).find_all('li') # 将数据写入Excel文件 row = 1 for song in song_list: song_name = song.find('a', {'class': 'pc_temp_songname'}).text.strip() song_title = song.get('title') singer_pattern = re.compile(r'.*(?= - )') song_singer = singer_pattern.findall(song_title) song_title = song.get('title') album_pattern = re.compile(r'(?<=- ).*') song_album = album_pattern.findall(song_title) worksheet.write(row, 0, song['data-index']) worksheet.write(row, 1, song_name) worksheet.write(row, 2, song_singer) worksheet.write(row, 3, song_album) worksheet.write(row, 4, song_time) # 将歌曲链接写入excel表格 song =str(song) song = song.split(\"javascript:\")[0] song_link = link_pattern.findall(song) worksheet.write(row, 5, song_link) row += 1 # 保存Excel文件 workbook.save('C:/Users/10722/Desktop/python答辩/kugou_rank.xls') ``` **说明** * 构造请求头`headers`中包含模拟浏览器请求的设置,例如`User-Agent`和`Referer`。 * 代码使用了`BeautifulSoup`库来解析HTML页面。 * `xlwt`库用于将数据写入Excel文件。 * `song`变量用于存储歌曲信息,包括歌名、歌手、专辑和播放时长。

正文

好家伙,爬虫来了

 

爬虫,这玩意,不会怎么办,

诶,先抄一份作业回来

1.别人的爬虫

 Python爬虫史上超详细讲解(零基础入门,老年人都看的懂)_ChenBinBini的博客-CSDN博客

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  # 网页解析,获取数据
import re  # 正则表达式,进行文字匹配`
import urllib.request, urllib.error  # 制定URL,获取网页数据
import xlwt  # 进行excel操作
#import sqlite3  # 进行SQLite数据库操作
findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)
def main():
    baseurl = "https://movie.douban.com/top250?start="  #要爬取的网页链接
    # 1.爬取网页
    datalist = getData(baseurl)
    savepath = "豆瓣电影Top250.xls"    #当前目录新建XLS,存储进去
    # dbpath = "movie.db"              #当前目录新建数据库,存储进去
    # 3.保存数据
    saveData(datalist,savepath)      #2种存储方式可以只选择一种
    # saveData2DB(datalist,dbpath)
# 爬取网页
def getData(baseurl):
    datalist = []  #用来存储爬取的网页信息
    for i in range(0, 10):  # 调用获取页面信息的函数,10次
        url = baseurl + str(i * 25)
        html = askURL(url)  # 保存获取到的网页源码
        # 2.逐一解析数据
        soup = BeautifulSoup(html, "html.parser")
        for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串
            data = []  # 保存一部电影所有信息
            item = str(item)
            link = re.findall(findLink, item)[0]  # 通过正则表达式查找
            data.append(link)
            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)
            titles = re.findall(findTitle, item)
            if (len(titles) == 2):
                ctitle = titles[0]
                data.append(ctitle)
                otitle = titles[1].replace("/", "")  #消除转义字符
                data.append(otitle)
            else:
                data.append(titles[0])
                data.append(' ')
            rating = re.findall(findRating, item)[0]
            data.append(rating)
            judgeNum = re.findall(findJudge, item)[0]
            data.append(judgeNum)
            inq = re.findall(findInq, item)
            if len(inq) != 0:
                inq = inq[0].replace("", "")
                data.append(inq)
            else:
                data.append(" ")
            bd = re.findall(findBd, item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)
            bd = re.sub('/', "", bd)
            data.append(bd.strip())
            datalist.append(data)
    return datalist
# 得到指定一个URL的网页内容
def askURL(url):
    head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
        "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
    }
    # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)

    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html
# 保存数据到表格
def saveData(datalist,savepath):
    print("save.......")
    book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i])  #列名
    for i in range(0,250):
        # print("第%d条" %(i+1))       #输出语句,用来测试
        data = datalist[i]
        for j in range(0,8):
            sheet.write(i+1,j,data[j])  #数据
    book.save(savepath) #保存

if __name__ == "__main__":  # 当程序执行时
    # 调用函数
     main()
    # init_db("movietest.db")
     print("爬取完毕!")

 

 卧槽,有点东西

这东西看上去挺nb啊,

也很方便,把我想要的一些数据直接总结到一个excel表格中了 

 

 我们来看看这些字段是如何匹配的

.xls

代码:

findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,标售规则   影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)

<img>?<span>? 这不就专业对口了吗

网站的html:

 将三个"表"都打开,再来看看对比

 

 (诶都对上了)

此处,使用正则表达式去匹配对应标签

正则表达式 – 简介 | 菜鸟教程 (runoob.com)

 

 

于是看了这个案例之后,我们就可以大概去分析以下爬虫到底干了什么:

1.发请求,随后拿到服务器发过来的.html文件

2.用正则表达式去套对应的,我们需要的数据

3.处理数据,最后把他们以某种方式呈现

 

具体来说,爬虫通常会执行以下步骤:

  1. 发送HTTP请求:爬虫通过发送HTTP请求来获取目标网页的内容。

  2. 解析HTML页面:网页内容一般是HTML格式的,爬虫需要使用HTML解析器来将页面内容解析成Python对象。

  3. 提取数据:通过Python编程语言对解析出来的对象进行遍历和操作,找到需要的数据并保存下来。

  4. 存储数据:将提取的数据保存到文件中、数据库中或者内存中,以备后续的处理和分析。

  5. 处理异常:爬虫需要处理异常,例如:请求超时、解析错误等,以确保爬虫的稳定性和可靠性。

开干

 

2.我的爬虫

好了,我们自己写一个爬虫试试

import requests
from bs4 import BeautifulSoup
import xlwt
import re

# 创建Excel文件
workbook = xlwt.Workbook(encoding='utf-8')
worksheet = workbook.add_sheet('kugou_rank')
# pattern = re.compile(r'(?<=- ).*')

# 构造请求头
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
} # 定义排行榜页面的URL url = 'https://www.kugou.com/yy/rank/home/1-6666.html?from=rank' # 发送请求并获取响应 r = requests.get(url, headers=headers) # 解析HTML soup = BeautifulSoup(r.text, 'html.parser') # 定位歌曲排行榜列表 song_list = soup.find('div', {'class': 'pc_temp_songlist'}).find_all('li') # 将数据写入Excel文件 worksheet.write(0, 0, '排名') #写入对应的字段 worksheet.write(0, 1, '歌名') worksheet.write(0, 2, '歌手') worksheet.write(0, 3, '专辑') worksheet.write(0, 4, '播放时长') worksheet.write(0, 5, '链接地址') row = 1 for song in song_list: song_name = song.find('a', {'class': 'pc_temp_songname'}).text.strip() #筛选出歌名 song_title = song.get('title') singer_pattern = re.compile(r'.*(?= - )') song_singer = singer_pattern.findall(song_title) song_title = song.get('title') print(song_title) album_pattern = re.compile(r'(?<=- ).*') song_album = album_pattern.findall(song_title) # song_album = pattern.findall(song) song_time = song.find('span', {'class': 'pc_temp_time'}).text.strip() link_pattern = re.compile(r'href="(.*?)"') worksheet.write(row, 0, song['data-index']) #将排行写入excel表格 worksheet.write(row, 1, song_name) #将歌名写入excel表格 worksheet.write(row, 2, song_singer) #将歌手写入excel表格 worksheet.write(row, 3, song_album) #将歌曲专辑写入excel表格 worksheet.write(row, 4, song_time) #将歌曲时长写入excel表格 song =str(song) song = song.split("javascript:")[0] song_link = link_pattern.findall(song) worksheet.write(row, 5, song_link) #将歌曲时长写入excel表格 row += 1 # 保存Excel文件 workbook.save('C:/Users/10722/Desktop/python答辩/kugou_rank.xls')

说明:

 

# 构造请求头
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}

 

带着请求头去请求,一个简单的"反爬"机制,模仿浏览器去发请求,非常实用

(其实没什么乱用,你能想到的,网站的开发者大概也能想到,所以你要是乱来还是会封你IP的)

没什么难度

这爬了酷狗的一个音乐榜单

然后记录了一些音乐数据,还有歌曲的地址。

 

还行,

 

 

 

 

 

与通过模仿学会Python爬虫(一):零基础上手相似的内容:

通过模仿学会Python爬虫(一):零基础上手

好家伙,爬虫来了 爬虫,这玩意,不会怎么办, 诶,先抄一份作业回来 1.别人的爬虫 Python爬虫史上超详细讲解(零基础入门,老年人都看的懂)_ChenBinBini的博客-CSDN博客 # -*- codeing = utf-8 -*- from bs4 import BeautifulSoup

算法金 | 必会的机器学习评估指标

构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们 1 分类指标

对DenseTensor进行Transpose

`ML.NET` 是微软推出的为. NET 平台设计的深度学习库,通过这个东西(`ModelBuilder`)可以自己构建模型,并用于后来的推理与数据处理。虽然设计是很好的,但是由于现在的 AI 发展基本上都以 `python` 实现作为基础,未来这个东西的发展不好说,特别是模型构建部分。我个人认为

国产大模型参加高考,同写2024年高考作文,及格分(通义千问、Kimi、智谱清言、Gemini Advanced、Claude-3-Sonnet、GPT-4o)

大家好,我是章北海 今天高考,上午的语文结束,市面上又要来一场大模型参考的文章了。 我也凑凑热闹,让通义千问、Kimi、智谱清言一起来写一下高考作文。 公平起见,不加任何其他prompt,直接把题目甩过去。 感觉写的都很一般,通篇口水文,都能拿个及格分吧。 有点好奇,就加了几个国外选手参赛:Gemi

[转帖]Python-Mock接口测试

https://www.cnblogs.com/zhangwuxuan/p/12928850.html 前言 今天跟小伙伴们一起来学习一下如何编写Python脚本进行mock测试。 什么是mock? 测试桩,模拟被测对象的返回,用于测试 通常意义的mock指的就是mock server, 模拟服务端

Go-Zero定义API实战:探索API语法规范与最佳实践(五)

前言 上一篇文章带你实现了Go-Zero模板定制化,本文将继续分享如何使用GO-ZERO进行业务开发。 通过编写API层,我们能够对外进行接口的暴露,因此学习规范的API层编写姿势是很重要的。 通过本文的分享,你将能够学习到Go-Zero的API语法规范,以及学会实际上手使用。 概述 下文所说的是

GAN!生成对抗网络GAN全维度介绍与实战

> 本文为生成对抗网络GAN的研究者和实践者提供全面、深入和实用的指导。通过本文的理论解释和实际操作指南,读者能够掌握GAN的核心概念,理解其工作原理,学会设计和训练自己的GAN模型,并能够对结果进行有效的分析和评估。 > 作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管

2024年,AI驱动测试管理工具会有哪些发展前景呢?

随着人工智能技术的日新月异,2024年的测试管理工具将迎来全新的发展机遇。AI赋能将助力测试管理工具实现前所未有的智能化升级,为软件研发团队带来革命性的变革。 一、什么是AI? 人工智能(AI)是一种能够模仿人类智能行为的技术。它通过模拟人类大脑的功能来解决复杂问题,具有学习、推理、感知、预测等能力

设计模式之简单工厂模式(学习笔记)

定义 简单工厂模式(Simple Factory Pattern)是一种创建型设计模式,它定义一个用于创建对象的接口,但由一个单独的类来实现实际创建的工作。简单工厂模式通过在一个类中集中管理对象的创建过程,可以减少客户端与具体类之间的耦合,使得代码结构更加清晰和易于维护。通过专门定义一个类来负责创建

设计模式之工厂模式(学习笔记)

定义 工厂方法模式是一种创建型设计模式,它定义了一个用于创建对象的接口,但由子类来决定实例化哪一个类。工厂方法使得类的实例化延迟到子类,这样可以让客户端在不需要知道具体类的情况下创建对象。工厂方法模式通过使用继承和多态性,允许子类来控制对象的创建方式,能够更好地应对对象创建的复杂性和变化性。 为什么