是什么让.NET7的Min和Max方法性能暴增了45倍?

Max,Min,性能,方法 · 浏览次数 : 7215

小编点评

**代码解析** * `array``是一个`int`类型的数组,其长度为`12`。 * `current``是一个`ref`类型指针,指向`array`的首地址。 * ``Vector128.LoadUnsafe()``方法用于从`current`指针的首地址中加载`128`位`int32`值。 * ``Vector128.Max()``方法用于从`array`中加载所有值的最大值。 * ``result``保存了`Vector128.Max()``方法的结果,即数组中最大值的值。 **运行结果** * `result``保存了数组中最大值的值,即`4`。 **结论** 这代码展示了如何使用`Vector128.Max()``方法从`array`中加载最大值,并使用`SIMD`技术提升性能。

正文

简介

在之前的一篇文章.NET性能系列文章一:.NET7的性能改进中我们聊到Linq中的Min()Max()方法.NET7比.NET6有高达45倍的性能提升,当时Benchmark代码和结果如下所示:

[Params(1000)]
public int Length { get; set; }

private int[] arr;

[GlobalSetup]
public void GlobalSetup() => arr = Enumerable.Range(0, Length).ToArray();

[Benchmark]
public int Min() => arr.Min();

[Benchmark]
public int Max() => arr.Max();
方法 运行时 数组长度 平均值 比率 分配
Min 1000 3,494.08 ns 53.24 32 B
Min 1000 65.64 ns 1.00 -
Max 1000 3,025.41 ns 45.92 32 B
Max 1000 65.93 ns 1.00 -

可以看到有高达45倍的性能提升,那就有小伙伴比较疑惑,在.NET7中到底是做了什么让它有如此大的性能提升?
所以本文就通过.NET7中的一些pr带大家一起探索下.NET7的Min()Max()方法是如何变快的。

探索

首先我们打开.NET Runtime的仓库,应该没有人不会知道仓库的地址吧?里面包含了.NET运行时所有的代码,包括CLR和BCL库。地址如下所示:
https://github.com/dotnet/runtime

然后我们熟练的根据命名空间System.Linq找到Linq所在的文件夹位置,如下所示:

可以看到很多Linq相关的方法都在这个文件夹内,让我们先来找一找Max()方法所对应的类。就是下方所示,我们可以看到刚好异步小王子Stephen Toub大佬提交了一个优化代码。

然后我们点击History查看这个类的提交历史,我们发现Stephen大佬在今年多次提交代码,都是优化其性能。

找到Stephen大佬的第一个提交,我们发现在Max的代码中,多了一个特殊的路径,如果数据类型为int[],那么就走单独的一个方法重载,并在这个重载中启用了SIMD向量化,代码如下所示:

SIMD向量化在我之前的多篇文章中都有提到(如:.NET如何快速比较两个byte数组是否相等),它是CPU的特殊指令,使用它可以大幅度的增强运算性能,我猜这就是性能提升的原因。

我们可以看到在上面只为int[]做了优化,然后继续浏览了Stephen大佬的其它几个PR,Stephen大佬将代码抽象了一下,使用了泛型的特性,然后顺便为其它的基本值类型都做了优化。能享受到性能提升的有byte sbyte ushort short uint int ulong long nuint nint

所以我们以最后一个提交为例,看看到底是用了什么SIMD指令,什么样的方法来提升的性能。抽取出来的核心代码如下所示:

private static T MinMaxInteger<T, TMinMax>(this IEnumerable<T> source)
    where T : struct, IBinaryInteger<T>
    where TMinMax : IMinMaxCalc<T>
{
    T value;

    if (source.TryGetSpan(out ReadOnlySpan<T> span))
    {
        if (span.IsEmpty)
        {
            ThrowHelper.ThrowNoElementsException();
        }

        // 判断当前平台是否支持使用Vector-128 或者 总数据长度是否小于128位
        // Vector128是指硬件支持同时计算128位二进制数据
        if (!Vector128.IsHardwareAccelerated || span.Length < Vector128<T>.Count)
        {
            // 进入到此路径,说明最基础的Vector128都不支持,那么直接使用for循环来比较
            value = span[0];
            for (int i = 1; i < span.Length; i++)
            {
                if (TMinMax.Compare(span[i], value))
                {
                    value = span[i];
                }
            }
        }
        // 判断当前平台是否支持使用Vector-256 或者 总数据长度是否小于256位
        // Vector256是指硬件支持同时计算256位二进制数据
        else if (!Vector256.IsHardwareAccelerated || span.Length < Vector256<T>.Count)
        {
            // 进入到此路径,说明支持Vector128但不支持Vector256
            // 那么进入128位的向量化的比较

            // 获取当前数组的首地址,也就是指向第0个元素
            ref T current = ref MemoryMarshal.GetReference(span);
            // 获取Vector128能使用的最后地址,因为整个数组占用的bit位有可能不能被128整除
            // 也就是说最后的尾巴不够128位让CPU跑一次,那么就直接最后往前数128位,让CPU能完整的跑完
            ref T lastVectorStart = ref Unsafe.Add(ref current, span.Length - Vector128<T>.Count);

            // 从内存首地址加载0-127bit数据,作为最大值的基准
            Vector128<T> best = Vector128.LoadUnsafe(ref current);
            // 计算下一个的位置,也就是偏移128位
            current = ref Unsafe.Add(ref current, Vector128<T>.Count);
            // 循环比较 确保地址小于最后地址
            while (Unsafe.IsAddressLessThan(ref current, ref lastVectorStart))
            {
                // 此时TMinMax.Compare重载代码 => Vector128.Max(left, right);
                // Vector128.Max 会根据类型一一比较,每x位最大的返回,
                // 比如int就是每32位比较,详情可以看我后文的解析
                best = TMinMax.Compare(best, Vector128.LoadUnsafe(ref current));
                current = ref Unsafe.Add(ref current, Vector128<T>.Count);
            }
            // 最后一组Vector128进行比较
            best = TMinMax.Compare(best, Vector128.LoadUnsafe(ref lastVectorStart));

            // 由于Vector128最后的结果是128位,比如我们类型是int32,那么最后的结果就有
            // 4个int32元素,我们还需要从这4个int32元素中找到最大的
            value = best[0];
            for (int i = 1; i < Vector128<T>.Count; i++)
            {
                // 这里 TMinMax.Compare就是简单的大小于比较
                // left > right
                if (TMinMax.Compare(best[i], value))
                {
                    value = best[i];
                }
            }
        }
        else
        {
            // Vector256执行流程和Vector128一致
            // 只是它能一次性判断256位,举个例子就是一个指令8个int32
            ref T current = ref MemoryMarshal.GetReference(span);
            ref T lastVectorStart = ref Unsafe.Add(ref current, span.Length - Vector256<T>.Count);

            Vector256<T> best = Vector256.LoadUnsafe(ref current);
            current = ref Unsafe.Add(ref current, Vector256<T>.Count);

            while (Unsafe.IsAddressLessThan(ref current, ref lastVectorStart))
            {
                best = TMinMax.Compare(best, Vector256.LoadUnsafe(ref current));
                current = ref Unsafe.Add(ref current, Vector256<T>.Count);
            }
            best = TMinMax.Compare(best, Vector256.LoadUnsafe(ref lastVectorStart));

            value = best[0];
            for (int i = 1; i < Vector256<T>.Count; i++)
            {
                if (TMinMax.Compare(best[i], value))
                {
                    value = best[i];
                }
            }
        }
    }
    else
    {
        // 如果不是基本类型的数组,那么进入迭代器,使用原始方法比较
        using (IEnumerator<T> e = source.GetEnumerator())
        {
            if (!e.MoveNext())
            {
                ThrowHelper.ThrowNoElementsException();
            }

            value = e.Current;
            while (e.MoveNext())
            {
                T x = e.Current;
                if (TMinMax.Compare(x, value))
                {
                    value = x;
                }
            }
        }
    }

    return value;
}

以上就是代码的解析,相信很多人疑惑的地方就是Vector128.Max做了什么,我们可以构造一个代码,让大家简单的看出来发生了什么。代码和运行结果如下所示:

// 定义一个数组
var array = new int[] { 4, 3, 2, 1, 1, 2, 3, 4 };

// 拿到数组首地址指针
ref int current = ref MemoryMarshal.GetReference(array.AsSpan());

// 从首地址加载128位数据,上面是int32
// 所以x = 4, 3, 2, 1
var x = Vector128.LoadUnsafe(ref current);

// 偏移128位以后,继续加载128位数据
// 所以y = 1, 2, 3, 4
var y = Vector128.LoadUnsafe(ref Unsafe.Add(ref current, Vector128<int>.Count));

// 使用Vector128.Max进行计算
var result = Vector128.Max(x, y);

// 打印输出结果
x.Dump();
y.Dump();
result.Dump();


从运行的结果可以看到,result中保存的是xy对应位置的最大值,这样是不是就觉得清晰明了,Stephe大佬上文的代码就是做了这样一个操作。

同样,如果我们把int32换成int64,也就是long类型,由于一个元素占用64位,所以一次只能加载2个int64元素比较最大值,得出对应位置的最大值:

最后使用下面的for循环代码,从result中找到最大的那个int32元素,从我们上文的案例中就是4,结果和代码如下所示:

var value = result[0];
for (int i = 1; i < Vector128<int>.Count; i++)
{
	if (value < result[i])
	{
		value = result[i];
	}
}


要注意的是,为了演示方便我这里数组bit长度刚好是128倍数,实际情况中需要考虑不是128倍数的场景。

总结

答案显而易见,试.NET7中Min()Max()方法性能暴增45倍的原因就是Stephe大佬对基本几个连续的值类型比较做了SIMD优化,而这样的优化在本次的.NET7版本中有非常多,后面有时间带大家一起看看SIMD又是如何提升其它方面的性能的。

与是什么让.NET7的Min和Max方法性能暴增了45倍?相似的内容:

是什么让.NET7的Min和Max方法性能暴增了45倍?

简介 在之前的一篇文章.NET性能系列文章一:.NET7的性能改进中我们聊到Linq中的Min()和Max()方法.NET7比.NET6有高达45倍的性能提升,当时Benchmark代码和结果如下所示: [Params(1000)] public int Length { get; set; } p

[转帖]CPU或内存占用过高时,发生了什么

https://www.cnblogs.com/jmcui/p/10259359.html 在开发过程中,有时候我们发现 JVM 占用的CPU/内存居高不下,跟我们的预期不符,这时,CPU 在做什么呢?是什么线程让CPU/内存如此忙碌呢?我们通过如下几步,可以查看 CPU 在执行什么线程。 1、to

记一次 .NET 某企业 ERP网站系统 崩溃分析

一:背景 1. 讲故事 前段时间收到了一个朋友的求助,说他的ERP网站系统会出现偶发性崩溃,找了好久也没找到是什么原因,让我帮忙看下,其实崩溃好说,用 procdump 自动抓一个就好,拿到 dump 之后,接下来就是一顿分析了。 二:WinDbg 分析 1. 是什么导致的崩溃 windbg 有一个

震惊,一行MD5居然让小伙伴都回不了家!!!

当你点开这篇文章的时候也许心想是哪个 XX 小编混到这里,先不要着急扔臭鸡蛋,本文是一篇标准(正经)的问题复盘文章。好了,一行 MD5 居然让小伙伴下不了班,到底是什么问题呢,让我们一起来看看吧。

PasteSpider的集群组件PasteCluster(让你的项目快速支持集群模式)的思路及实现(含源码)

PasteSpider是什么? 一款使用.net编写的开源的Linux容器部署助手,支持一键发布,平滑升级,自动伸缩, Key-Value配置,项目网关,环境隔离,运行报表,差量升级,私有仓库,集群部署,版本管理等! 30分钟上手,让开发也可以很容易的学会在linux上部署你得项目! [从需求角度介

测试人员都是画画大神,让我看看谁还不会用代码图?

给大家30秒的时间,一起来思考这是什么? 这是某系统登陆模块功能的初始类图。 随着现代软件的不断复杂化,代码图(Code Graphs)为测试人员提供了一种直观的方法,让复杂的代码逻辑易于理解。本文将深入探讨代码图,通过挖掘到的真实场景和实际示例,展示可视化代码图如何增强软件测试人员的能力以及如何开

前端认识docker

Docker 是什么 先看看百科的定义: Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 容器引擎?镜像?容器?虚拟化

Docker

Docker是什么? Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。 容器是完全使用沙箱机制,相互之间不会有

MongoDB从入门到实战之.NET Core使用MongoDB开发ToDoList系统(2)-Swagger框架集成

Swagger是什么? Swagger是一个规范且完整API文档管理框架,可以用于生成、描述和调用可视化的RESTful风格的 Web 服务。Swagger 的目标是对 REST API 定义一个标准且和语言无关的接口,可以让人和计算机拥有无须访问源码、文档或网络流量监测就可以发现和理解服务的能力。

Java多线程-线程生命周期(一)

如果要问我Java当中最难的部分是什么?最有意思的部分是什么?最多人讨论的部分是什么?那我会毫不犹豫地说:多线程。 Java多线程说它难,也不难,就是有点绕;说它简单,也不简单,需要理解的概念很多,尤其是很多底层知识,如数据结构、操作系统的部分。 Java多线程掌握得好,不仅仅只是对Java,对任何