[转帖]JVM优化之调整大内存分页(LargePage)

jvm,优化,调整,内存,分页,largepage · 浏览次数 : 0

小编点评

**内存分页** **什么是内存分页?** 内存分页是一种在内存管理中常用的技术,它将虚拟地址与物理地址进行分割,并使用页表来维护这些映射关系。这种技术可以提高内存利用率并使程序可以访问更大的内存空间。 **内存分页的基本原理** 内存分页将虚拟地址分成页(page)和页帧(page frame)。页大小通常为 4K,页帧大小通常为 4KB。这些页和页帧被存储在内存中,而页表存储在物理内存中。 **分 page 和分页帧** 页面被分为多个页帧,每个页帧的大小为页大小。页帧是一个独立的内存区域,包含与该页面相关的所有数据。 **页表** 页表是一个数据结构,它包含每个页的起始地址和长度。页表存储在内存中,并由 OS 在程序启动时初始化。 **优点** * 提高内存利用率。 * 允许程序访问更大的内存空间。 * 减少页切换带来的性能开销。 **缺点** * 增加了内存碎片。 * 增加了页表维护的开销。

正文

 

 
 
 
 
转载自:http://jm.taobao.org/2009/11/21/3157/

什么是内存分页?

       CPU是通过寻址来访问内存的。32位CPU的寻址宽度是 0~0xFFFFFFFF,即4G,也就是说可支持的物理内存最大是4G。但在实践过程中,程序需要使用4G内存,而可用物理内存小于4G,导致程序不得不降低内存占用。为了解决此类问题,现代CPU引入了MMU(Memory Management Unit,内存管理单元)。
       MMU 的核心思想是利用虚拟地址替代物理地址,即CPU寻址时使用虚址,由MMU负责将虚址映射为物理地址。MMU的引入,解决了对物理内存的限制,对程序来说,就像自己在使用4G内存一样。
       内存分页(Paging)是在使用MMU的基础上,提出的一种内存管理机制。它将虚拟地址和物理地址按固定大小(4K)分割成页(page)和页帧(page frame),并保证页与页帧的大小相同。这种机制,从数据结构上,保证了访问内存的高效,并使OS能支持非连续性的内存分配。在程序内存不够用时,还可以将不常用的物理内存页转移到其他存储设备上,比如磁盘,这就是虚拟内存。
       在上文中提到,虚拟地址与物理地址需要通过映射,才能使CPU正常工作。而映射就需要存储映射表。在现代CPU架构中,映射关系通常被存储在物理内存上一个被称之为页表(page table)的地方。 如下图:
             
       页表是被存储在内存中的,CPU通过总线访问内存,肯定慢于直接访问寄存器的。为了进一步优化性能,现代CPU架构引入了TLB(Translation lookaside buffer,页表寄存器缓冲),用来缓存一部分经常访问的页表内容。如下图:
             

为什么要支持大内存分页?

       TLB是有限的,这点毫无疑问。当超出TLB的存储极限时,就会发生 TLB miss,之后,OS就会命令CPU去访问内存上的页表。如果频繁的出现TLB miss,程序的性能会下降地很快。
       为了让TLB可以存储更多的页地址映射关系,我们的做法是调大内存分页大小。如果一个页4M,对比一个页4K,前者可以让TLB多存储1000个页地址映射关系,性能的提升是比较可观的。

调整OS和JVM内存分页

       在Linux确认是否支持,请在终端敲如下命令:
[java] view plain copy
 
  1. $cat /proc/meminfo | grep Huge  
  2. HugePages_Total: 0  
  3. HugePages_Free: 0  
  4. Hugepagesize: 2048 kB  
       如果有HugePage字样的输出内容,说明OS是支持大内存分页的。Hugepagesize就是默认的大内存页size。接下来,为了让JVM可以调整大内存页size,需要设置下OS 共享内存段最大值和大内存页数量。
       共享内存段最大值,建议这个值大于Java Heap size,这个例子里设置了4G内存。
[java] view plain copy
 
  1. $ echo 4294967295 > /proc/sys/kernel/shmmax  
       大内存页数量,这个值一般是 Java进程占用最大内存/单个页的大小,比如java设置1.5G,单个页10M,那么数量为1536/10 = 154。
[java] view plain copy
 
  1. $ echo 154 > /proc/sys/vm/nr_hugepages  
       单个页大小调整,JVM启用时加参数 -XX:LargePageSizeInBytes=10m。如果JDK是在1.5 update5以前的,还需要手动加 -XX:+UseLargePages,作用是启用大内存页支持。

与[转帖]JVM优化之调整大内存分页(LargePage)相似的内容:

[转帖]JVM优化之调整大内存分页(LargePage)

转自:http://cjjwzs.iteye.com/blog/1059381 本文将从内存分页的原理,如何调整分页大小两节内容,向你阐述LargePage对JVM的性能有何提升作用,并在文末点明了大内分页的副作用。OK,让我们开始吧! 内存分页大小对性能的提升原理 首先,我们需要回顾一小部分计算机

[转帖]JVM优化之调整大内存分页(LargePage)

转载自:http://jm.taobao.org/2009/11/21/3157/ 什么是内存分页? CPU是通过寻址来访问内存的。32位CPU的寻址宽度是 0~0xFFFFFFFF,即4G,也就是说可支持的物理内存最大是4G。但在实践过程中,程序需要使用4G内存,而可用物理内存小于4G,导致程序不

[转帖]小知识点 之 JVM -XX:MaxGCPauseMillis 与 -XX:GCTimeRatio

https://www.cnblogs.com/hellxz/p/14056403.html 写在前边 JVM调优更多是针对不同应用类型及目标进行的调整,往往有很大的实验成份,通过实验来针对当前应用设置相对合适的参数,提高应用程序的性能与稳定性 最近在复习JVM,Parallel Scavenage

[转帖]「性能优化系列」Tomcat线程连接池参数优化和JVM参数调优

尤其是以下三个配置项:maxConnections、maxThreads、acceptCount。 1.4.1 Tomcat的高效配置 Tomcat的maxConnections、maxThreads、acceptCount三大配置,分别表示最大连接数,最大线程数、最大的等待数,可以通过applic

[转帖]JVM系列之:深入学习方法内联

在前面多篇文章中多次提到方法内联,作为编译器最重要的优化技术,该技术不仅可以消除调用本身带来的性能开销,还能够触发更多的优化。本文将带领大家对该技术一探究竟。 方法内联 方法内联指的是:在编译过程中遇到方法调用时,将目标方法的方法体纳入编译范围之中,并取代原方法调用的优化手段。 以 getter/s

[转帖]JVM系列之:深入学习方法内联

https://zhuanlan.zhihu.com/p/487044559 在前面多篇文章中多次提到方法内联,作为编译器最重要的优化技术,该技术不仅可以消除调用本身带来的性能开销,还能够触发更多的优化。本文将带领大家对该技术一探究竟。 方法内联 方法内联指的是:在编译过程中遇到方法调用时,将目标方

[转帖]JVM 调优之 Reserved Code Cache Size

https://www.modb.pro/db/251381 01 现象 社区小伙伴最近在为 Kylin 4 开发 Soft Affinity + Local Cache 的性能测试过程中,遇到了压测场景下查询响应时间不稳定问题, RT 随着时间变化较大,现象如下: 同样的 SQL (只是参数不同)

[转帖]JVM系列之:GC调优基础以及初识jstat命令

本文为《深入学习 JVM 系列》第二十二篇文章 影响垃圾收集性能有三个主要的属性,垃圾收集调优又有三个基本原则,以及垃圾收集调优时需要采集的信息。如果想要对垃圾收集进行调优,则需要根据实际场景对不同属性做出取舍,理解调优的原则以及收集什么信息。 性能属性 吞吐量 吞吐量是评价垃圾收集器能力的重要指标

[转帖]高并发场景下JVM调优实践之路

https://www.jianshu.com/p/f5f5f99e2417 一、背景 2021年2月,收到反馈,视频APP某核心接口高峰期响应慢,影响用户体验。 通过监控发现,接口响应慢主要是P99耗时高引起的,怀疑与该服务的GC有关,该服务典型的一个实例GC表现如下图: image image

[转帖]【JVM】线程安全与锁优化

线程安全 1.定义 当多个线程访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果 2.分类 (1)不可变 不可变的对象一定是线程安全的,只要一个不可变对象被正确地构建出来(没有发生thi